CatVTON / model /cloth_masker.py
ZhengChong
chore: Add SCHP model and detectron2 dependencies
6a6227f
raw
history blame
11 kB
import os
from PIL import Image
from typing import Union
import numpy as np
import cv2
from diffusers.image_processor import VaeImageProcessor
import torch
from model.SCHP import SCHP # type: ignore
from model.DensePose import DensePose # type: ignore
DENSE_INDEX_MAP = {
"background": [0],
"torso": [1, 2],
"right hand": [3],
"left hand": [4],
"right foot": [5],
"left foot": [6],
"right thigh": [7, 9],
"left thigh": [8, 10],
"right leg": [11, 13],
"left leg": [12, 14],
"left big arm": [15, 17],
"right big arm": [16, 18],
"left forearm": [19, 21],
"right forearm": [20, 22],
"face": [23, 24],
"thighs": [7, 8, 9, 10],
"legs": [11, 12, 13, 14],
"hands": [3, 4],
"feet": [5, 6],
"big arms": [15, 16, 17, 18],
"forearms": [19, 20, 21, 22],
}
ATR_MAPPING = {
'Background': 0, 'Hat': 1, 'Hair': 2, 'Sunglasses': 3,
'Upper-clothes': 4, 'Skirt': 5, 'Pants': 6, 'Dress': 7,
'Belt': 8, 'Left-shoe': 9, 'Right-shoe': 10, 'Face': 11,
'Left-leg': 12, 'Right-leg': 13, 'Left-arm': 14, 'Right-arm': 15,
'Bag': 16, 'Scarf': 17
}
LIP_MAPPING = {
'Background': 0, 'Hat': 1, 'Hair': 2, 'Glove': 3,
'Sunglasses': 4, 'Upper-clothes': 5, 'Dress': 6, 'Coat': 7,
'Socks': 8, 'Pants': 9, 'Jumpsuits': 10, 'Scarf': 11,
'Skirt': 12, 'Face': 13, 'Left-arm': 14, 'Right-arm': 15,
'Left-leg': 16, 'Right-leg': 17, 'Left-shoe': 18, 'Right-shoe': 19
}
PROTECT_BODY_PARTS = {
'upper': ['Left-leg', 'Right-leg'],
'lower': ['Right-arm', 'Left-arm', 'Face'],
'overall': [],
'inner': ['Left-leg', 'Right-leg'],
'outer': ['Left-leg', 'Right-leg'],
}
PROTECT_CLOTH_PARTS = {
'upper': {
'ATR': ['Skirt', 'Pants'],
'LIP': ['Skirt', 'Pants']
},
'lower': {
'ATR': ['Upper-clothes'],
'LIP': ['Upper-clothes', 'Coat']
},
'overall': {
'ATR': [],
'LIP': []
},
'inner': {
'ATR': ['Dress', 'Coat', 'Skirt', 'Pants'],
'LIP': ['Dress', 'Coat', 'Skirt', 'Pants', 'Jumpsuits']
},
'outer': {
'ATR': ['Dress', 'Pants', 'Skirt'],
'LIP': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Jumpsuits']
}
}
MASK_CLOTH_PARTS = {
'upper': ['Upper-clothes', 'Coat', 'Dress', 'Jumpsuits'],
'lower': ['Pants', 'Skirt', 'Dress', 'Jumpsuits'],
'overall': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Coat', 'Jumpsuits'],
'inner': ['Upper-clothes'],
'outer': ['Coat',]
}
MASK_DENSE_PARTS = {
'upper': ['torso', 'big arms', 'forearms'],
'lower': ['thighs', 'legs'],
'overall': ['torso', 'thighs', 'legs', 'big arms', 'forearms'],
'inner': ['torso'],
'outer': ['torso', 'big arms', 'forearms']
}
schp_public_protect_parts = ['Hat', 'Hair', 'Sunglasses', 'Left-shoe', 'Right-shoe', 'Bag', 'Glove', 'Scarf']
schp_protect_parts = {
'upper': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits'],
'lower': ['Left-arm', 'Right-arm', 'Upper-clothes', 'Coat'],
'overall': [],
'inner': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits', 'Coat'],
'outer': ['Left-leg', 'Right-leg', 'Skirt', 'Pants', 'Jumpsuits', 'Upper-clothes']
}
schp_mask_parts = {
'upper': ['Upper-clothes', 'Dress', 'Coat', 'Jumpsuits'],
'lower': ['Pants', 'Skirt', 'Dress', 'Jumpsuits', 'socks'],
'overall': ['Upper-clothes', 'Dress', 'Pants', 'Skirt', 'Coat', 'Jumpsuits', 'socks'],
'inner': ['Upper-clothes'],
'outer': ['Coat',]
}
dense_mask_parts = {
'upper': ['torso', 'big arms', 'forearms'],
'lower': ['thighs', 'legs'],
'overall': ['torso', 'thighs', 'legs', 'big arms', 'forearms'],
'inner': ['torso'],
'outer': ['torso', 'big arms', 'forearms']
}
def vis_mask(image, mask):
image = np.array(image).astype(np.uint8)
mask = np.array(mask).astype(np.uint8)
mask[mask > 127] = 255
mask[mask <= 127] = 0
mask = np.expand_dims(mask, axis=-1)
mask = np.repeat(mask, 3, axis=-1)
mask = mask / 255
return Image.fromarray((image * (1 - mask)).astype(np.uint8))
def part_mask_of(part: Union[str, list],
parse: np.ndarray, mapping: dict):
if isinstance(part, str):
part = [part]
mask = np.zeros_like(parse)
for _ in part:
if _ not in mapping:
continue
if isinstance(mapping[_], list):
for i in mapping[_]:
mask += (parse == i)
else:
mask += (parse == mapping[_])
return mask
def hull_mask(mask_area: np.ndarray):
ret, binary = cv2.threshold(mask_area, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
hull_mask = np.zeros_like(mask_area)
for c in contours:
hull = cv2.convexHull(c)
hull_mask = cv2.fillPoly(np.zeros_like(mask_area), [hull], 255) | hull_mask
return hull_mask
class AutoMasker:
def __init__(
self,
densepose_ckpt='./Models/DensePose',
schp_ckpt='./Models/SCHP',
device='cuda'):
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)
self.densepose_processor = DensePose(densepose_ckpt, device)
self.schp_processor_atr = SCHP(ckpt_path=os.path.join(schp_ckpt, 'exp-schp-201908301523-atr.pth'), device=device)
self.schp_processor_lip = SCHP(ckpt_path=os.path.join(schp_ckpt, 'exp-schp-201908261155-lip.pth'), device=device)
self.mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
def process_densepose(self, image_or_path):
return self.densepose_processor(image_or_path, resize=1024)
def process_schp_lip(self, image_or_path):
return self.schp_processor_lip(image_or_path)
def process_schp_atr(self, image_or_path):
return self.schp_processor_atr(image_or_path)
def preprocess_image(self, image_or_path):
return {
'densepose': self.densepose_processor(image_or_path, resize=1024),
'schp_atr': self.schp_processor_atr(image_or_path),
'schp_lip': self.schp_processor_lip(image_or_path)
}
@staticmethod
def cloth_agnostic_mask(
densepose_mask: Image.Image,
schp_lip_mask: Image.Image,
schp_atr_mask: Image.Image,
part: str='overall',
**kwargs
):
assert part in ['upper', 'lower', 'overall', 'inner', 'outer'], f"part should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {part}"
w, h = densepose_mask.size
dilate_kernel = max(w, h) // 250
dilate_kernel = dilate_kernel if dilate_kernel % 2 == 1 else dilate_kernel + 1
dilate_kernel = np.ones((dilate_kernel, dilate_kernel), np.uint8)
kernal_size = max(w, h) // 25
kernal_size = kernal_size if kernal_size % 2 == 1 else kernal_size + 1
densepose_mask = np.array(densepose_mask)
schp_lip_mask = np.array(schp_lip_mask)
schp_atr_mask = np.array(schp_atr_mask)
# Strong Protect Area (Hands, Face, Accessory, Feet)
hands_protect_area = part_mask_of(['hands', 'feet'], densepose_mask, DENSE_INDEX_MAP)
hands_protect_area = cv2.dilate(hands_protect_area, dilate_kernel, iterations=1)
hands_protect_area = hands_protect_area & \
(part_mask_of(['Left-arm', 'Right-arm', 'Left-leg', 'Right-leg'], schp_atr_mask, ATR_MAPPING) | \
part_mask_of(['Left-arm', 'Right-arm', 'Left-leg', 'Right-leg'], schp_lip_mask, LIP_MAPPING))
face_protect_area = part_mask_of('Face', schp_lip_mask, LIP_MAPPING)
strong_protect_area = hands_protect_area | face_protect_area
# Weak Protect Area (Hair, Irrelevant Clothes, Body Parts)
body_protect_area = part_mask_of(PROTECT_BODY_PARTS[part], schp_lip_mask, LIP_MAPPING) | part_mask_of(PROTECT_BODY_PARTS[part], schp_atr_mask, ATR_MAPPING)
hair_protect_area = part_mask_of(['Hair'], schp_lip_mask, LIP_MAPPING) | \
part_mask_of(['Hair'], schp_atr_mask, ATR_MAPPING)
cloth_protect_area = part_mask_of(PROTECT_CLOTH_PARTS[part]['LIP'], schp_lip_mask, LIP_MAPPING) | \
part_mask_of(PROTECT_CLOTH_PARTS[part]['ATR'], schp_atr_mask, ATR_MAPPING)
accessory_protect_area = part_mask_of((accessory_parts := ['Hat', 'Glove', 'Sunglasses', 'Bag', 'Left-shoe', 'Right-shoe', 'Scarf', 'Socks']), schp_lip_mask, LIP_MAPPING) | \
part_mask_of(accessory_parts, schp_atr_mask, ATR_MAPPING)
weak_protect_area = body_protect_area | cloth_protect_area | hair_protect_area | strong_protect_area | accessory_protect_area
# Mask Area
strong_mask_area = part_mask_of(MASK_CLOTH_PARTS[part], schp_lip_mask, LIP_MAPPING) | \
part_mask_of(MASK_CLOTH_PARTS[part], schp_atr_mask, ATR_MAPPING)
background_area = part_mask_of(['Background'], schp_lip_mask, LIP_MAPPING) & part_mask_of(['Background'], schp_atr_mask, ATR_MAPPING)
mask_dense_area = part_mask_of(MASK_DENSE_PARTS[part], densepose_mask, DENSE_INDEX_MAP)
mask_dense_area = cv2.resize(mask_dense_area.astype(np.uint8), None, fx=0.25, fy=0.25, interpolation=cv2.INTER_NEAREST)
mask_dense_area = cv2.dilate(mask_dense_area, dilate_kernel, iterations=2)
mask_dense_area = cv2.resize(mask_dense_area.astype(np.uint8), None, fx=4, fy=4, interpolation=cv2.INTER_NEAREST)
mask_area = (np.ones_like(densepose_mask) & (~weak_protect_area) & (~background_area)) | mask_dense_area
mask_area = hull_mask(mask_area * 255) // 255 # Convex Hull to expand the mask area
mask_area = mask_area & (~weak_protect_area)
mask_area = cv2.GaussianBlur(mask_area * 255, (kernal_size, kernal_size), 0)
mask_area[mask_area < 25] = 0
mask_area[mask_area >= 25] = 1
mask_area = (mask_area | strong_mask_area) & (~strong_protect_area)
mask_area = cv2.dilate(mask_area, dilate_kernel, iterations=1)
return Image.fromarray(mask_area * 255)
def __call__(
self,
image: Union[str, Image.Image],
mask_type: str = "upper",
):
assert mask_type in ['upper', 'lower', 'overall', 'inner', 'outer'], f"mask_type should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {mask_type}"
preprocess_results = self.preprocess_image(image)
mask = self.cloth_agnostic_mask(
preprocess_results['densepose'],
preprocess_results['schp_lip'],
preprocess_results['schp_atr'],
part=mask_type,
)
return {
'mask': mask,
'densepose': preprocess_results['densepose'],
'schp_lip': preprocess_results['schp_lip'],
'schp_atr': preprocess_results['schp_atr']
}
if __name__ == '__main__':
pass