File size: 8,751 Bytes
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python
# -*- encoding: utf-8 -*-

"""
@Author  :   Peike Li
@Contact :   [email protected]
@File    :   simple_extractor.py
@Time    :   8/30/19 8:59 PM
@Desc    :   Simple Extractor
@License :   This source code is licensed under the license found in the
             LICENSE file in the root directory of this source tree.
"""
import threading
from queue import Queue
from tqdm import tqdm
import os
import torch
import argparse
import numpy as np
from PIL import Image
from tqdm import tqdm
import cv2

from torch.utils.data import DataLoader
import torchvision.transforms as transforms

import networks
from utils.transforms import transform_logits
from datasets.simple_extractor_dataset import SimpleFolderDataset
from utils.transforms import get_affine_transform

dataset_settings = {
    'lip': {
        'input_size': [473, 473],
        'num_classes': 20,
        'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
                  'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm',
                  'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
    },
    'atr': {
        'input_size': [512, 512],
        'num_classes': 18,
        'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
                  'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']
    },
    'pascal': {
        'input_size': [512, 512],
        'num_classes': 7,
        'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'],
    }
}

def _box2cs(box,input_size):
    x, y, w, h = box[:4]
    return _xywh2cs(x, y, w, h,input_size)

def _xywh2cs(x, y, w, h,input_size):
    aspect_ratio = input_size[1] * 1.0 / input_size[0]
    center = np.zeros((2), dtype=np.float32)
    center[0] = x + w * 0.5
    center[1] = y + h * 0.5
    if w > aspect_ratio * h:
        h = w * 1.0 / aspect_ratio
    elif w < aspect_ratio * h:
        w = h * aspect_ratio
    scale = np.array([w, h], dtype=np.float32)
    return center, scale

def get_arguments():
    """Parse all the arguments provided from the CLI.
    Returns:
      A list of parsed arguments.
    """
    parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")

    parser.add_argument("--dataset", type=str, default='atr', choices=['lip', 'atr', 'pascal'])
    parser.add_argument("--model-restore", type=str, 
                        default='/data1/chongzheng/zhangwq/Self-Correction-Human-Parsing-master/exp-schp-201908301523-atr.pth',
                        help="restore pretrained model parameters.")
    parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.")
    parser.add_argument("--input-dir", type=str, default='/home/chongzheng_p23/data/Datasets/UniFashion/YOOX/YOOX-Images', help="path of input image folder.")
    parser.add_argument("--output-dir", type=str, default='/home/chongzheng_p23/data/Datasets/UniFashion/YOOX/YOOX-SCHP', help="path of output image folder.")
    parser.add_argument("--logits", action='store_true', default=False, help="whether to save the logits.")

    return parser.parse_args()


def get_palette(num_cls):
    """ Returns the color map for visualizing the segmentation mask.
    Args:
        num_cls: Number of classes
    Returns:
        The color map
    """
    n = num_cls
    palette = [0] * (n * 3)
    for j in range(0, n):
        lab = j
        palette[j * 3 + 0] = 0
        palette[j * 3 + 1] = 0
        palette[j * 3 + 2] = 0
        i = 0
        while lab:
            palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
            palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
            palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
            i += 1
            lab >>= 3
    return palette


def schp_process(image_queue,model,progress_bar,input_size,transform):
    while True:
        img_path = image_queue.get()
        image_queue.task_done()

        if img_path is None: # 收到结束信号
            break

        save_path = img_path.replace("YOOX-Images","YOOX-SCHP").replace(".jpg",".png")
        if os.path.exists(save_path):
            progress_bar.update(1)
            continue

        root = os.path.dirname(img_path)
        img_name = img_path.split("/")[-1].split(".")[0]
        img = cv2.imread(img_path, cv2.IMREAD_COLOR)
        if img is None:
            progress_bar.update(1)
            continue
        if img is not None:
            h, w, _ = img.shape
            # Get person center and scale
            person_center, s = _box2cs([0, 0, w - 1, h - 1],input_size)
            r = 0
            trans = get_affine_transform(person_center, s, r, input_size)
            input = cv2.warpAffine(
                img,
                trans,
                (int(input_size[1]), int(input_size[0])),
                flags=cv2.INTER_LINEAR,
                borderMode=cv2.BORDER_CONSTANT,
                borderValue=(0, 0, 0))

            image = transform(input)
            meta = {
                'img_path': img_path,
                'name': img_name,
                'root': root,
                'center': person_center,
                'height': h,
                'width': w,
                'scale': s,
                'rotation': r
            }


        if not os.path.exists(save_path):
            img_name = meta['name'][0]
            c = meta['center'][0]
            # s = meta['scale'][0]
            # w = meta['width'][0]
            # h = meta['height'][0]
            root = meta['root'][0]
            save_root = root.replace("YOOX-Images","YOOX-SCHP")

            if not os.path.exists(save_root):
                os.makedirs(save_root)

            output = model(image.cuda())
            upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
            upsample_output = upsample(output[0][-1][0].unsqueeze(0))
            upsample_output = upsample_output.squeeze()
            upsample_output = upsample_output.permute(1, 2, 0)  # CHW -> HWC

            logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size)
            parsing_result = np.argmax(logits_result, axis=2)
            parsing_result_path = save_path
            output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
            output_img.putpalette(palette)
            output_img.save(parsing_result_path)
            progress_bar.update(1)


            
def main():
    args = get_arguments()

    gpus = [int(i) for i in args.gpu.split(',')]
    assert len(gpus) == 1
    if not args.gpu == 'None':
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    num_classes = dataset_settings[args.dataset]['num_classes']
    input_size = dataset_settings[args.dataset]['input_size']
    label = dataset_settings[args.dataset]['label']
    print("Evaluating total class number {} with {}".format(num_classes, label))

    model = networks.init_model('resnet101', num_classes=num_classes, pretrained=None)

    state_dict = torch.load(args.model_restore)['state_dict']
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    model.load_state_dict(new_state_dict)
    model.cuda()
    model.eval()

    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
    ])
    # dataset = SimpleFolderDataset(root=args.input_dir, input_size=input_size, transform=transform)
    # dataloader = DataLoader(dataset)
    image_queue = Queue()
    for root, dirs, files in os.walk("/home/chongzheng_p23/data/Datasets/UniFashion/YOOX/YOOX-Images"):
        for file in files:
            if file.endswith(".jpg"):
                source_file_path = os.path.join(root, file)
                image_queue.put(source_file_path)

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    palette = get_palette(num_classes)
    
    progress_bar = tqdm(total=image_queue.qsize(), desc="Processing SCHP")

    with torch.no_grad():
        devices = [1]*2
        consumer_threads = []
        for i in devices:
            device = f'cuda:{i}'
            consumer_threads.append(threading.Thread(target=schp_process, 
                                    args=(image_queue,model,progress_bar,input_size,transform)))
            consumer_threads[-1].start()

        # for idx, batch in enumerate(tqdm(dataloader)):

    return


if __name__ == '__main__':
    main()