kmnis commited on
Commit
ab8530c
·
1 Parent(s): 3dffc81

Added bmi predictor app

Browse files
Files changed (3) hide show
  1. app.py +80 -0
  2. lr.p +0 -0
  3. requirements.txt +13 -0
app.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ import os
4
+ import numpy as np
5
+ import pandas as pd
6
+ from glob import glob
7
+ import pickle
8
+
9
+ from sklearn.model_selection import train_test_split
10
+ from sklearn.ensemble import RandomForestRegressor
11
+ from sklearn.metrics import mean_squared_error, mean_absolute_error
12
+ from scipy.stats import pearsonr
13
+
14
+ import matplotlib.pyplot as plt
15
+ import seaborn as sns
16
+
17
+ import torch
18
+ import torchvision.transforms as transforms
19
+ from PIL import Image
20
+
21
+ from facenet_pytorch import MTCNN, InceptionResnetV1
22
+
23
+ import warnings
24
+
25
+ warnings.filterwarnings("ignore")
26
+
27
+ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
28
+
29
+ # If required, create a face detection pipeline using MTCNN:
30
+ mtcnn = MTCNN(
31
+ image_size=160, margin=40, min_face_size=20,
32
+ thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True,
33
+ device=device
34
+ )
35
+
36
+ mtcnn2 = MTCNN(
37
+ image_size=160, margin=40, min_face_size=20,
38
+ thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=False,
39
+ device=device
40
+ )
41
+
42
+ # Create an inception resnet (in eval mode):
43
+ resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)
44
+
45
+ # Define the transformation to preprocess the images
46
+ preprocess = transforms.Compose([
47
+ transforms.Resize((160, 160)),
48
+ transforms.ToTensor(),
49
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
50
+ ])
51
+
52
+ def extract_features(img):
53
+ img = img.convert('RGB')
54
+ face = mtcnn(img)
55
+ if face is None:
56
+ face = preprocess(img)
57
+
58
+ img = torch.stack([face]).to(device)
59
+
60
+ with torch.no_grad():
61
+ features = resnet(img)
62
+
63
+ return features[0].cpu().numpy()
64
+
65
+
66
+ with open("/app/models/lr.p", "rb") as f:
67
+ lr = pickle.load(f)
68
+
69
+ img_file_buffer = st.camera_input("Take a picture")
70
+
71
+ if img_file_buffer is not None:
72
+ # To read image file buffer as a PIL Image:
73
+ img = Image.open(img_file_buffer)
74
+
75
+ detected_image = Image.fromarray(mtcnn2(img).numpy().transpose(1, 2, 0).astype(np.uint8))
76
+ st.image(detected_image, caption="Detected Face")
77
+
78
+ embeddings = extract_features(img)
79
+ bmi = round(lr.predict([embeddings])[0], 2)
80
+ st.write(f"Your BMI is {bmi}")
lr.p ADDED
Binary file (4.51 kB). View file
 
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ facenet-pytorch==2.5.3
2
+ imgaug==0.4.0
3
+ matplotlib==3.7.1
4
+ numpy==1.23.5
5
+ opencv-python==4.7.0.72
6
+ pandas==1.5.3
7
+ scikit-learn==1.2.2
8
+ scipy==1.10.1
9
+ seaborn==0.12.2
10
+ streamlit==1.22.0
11
+ torch==2.0.1
12
+ torchvision==0.15.2
13
+ tqdm==4.65.0