Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import numpy as np | |
import pandas as pd | |
from glob import glob | |
import pickle | |
from sklearn.model_selection import train_test_split | |
from sklearn.ensemble import RandomForestRegressor | |
from sklearn.metrics import mean_squared_error, mean_absolute_error | |
from scipy.stats import pearsonr | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
from facenet_pytorch import MTCNN, InceptionResnetV1 | |
import warnings | |
warnings.filterwarnings("ignore") | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
with st.spinner('Loading the models...'): | |
# If required, create a face detection pipeline using MTCNN: | |
mtcnn = MTCNN( | |
image_size=160, margin=40, min_face_size=20, | |
thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, | |
device=device | |
) | |
mtcnn2 = MTCNN( | |
image_size=160, margin=40, min_face_size=20, | |
thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=False, | |
device=device | |
) | |
# Create an inception resnet (in eval mode): | |
resnet = InceptionResnetV1(pretrained='casia-webface').eval().to(device) | |
# Define the transformation to preprocess the images | |
preprocess = transforms.Compose([ | |
transforms.Resize((160, 160)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
]) | |
def extract_features(img): | |
img = img.convert('RGB') | |
face = mtcnn(img) | |
if face is None: | |
face = preprocess(img) | |
img = torch.stack([face]).to(device) | |
with torch.no_grad(): | |
features = resnet(img) | |
return features[0].cpu().numpy() | |
with open("models/model.p", "rb") as f: | |
lr = pickle.load(f) | |
st.markdown("<center><h1>Know Your BMI</h1></center>", unsafe_allow_html=True) | |
st.caption("<center>Click a photo and the underlying Machine Learning model will predict your BMI</center>", unsafe_allow_html=True) | |
# img_file_buffer = st.camera_input("Click a photo and the underlying Machine Learning model will predict your BMI", label_visibility="hidden") | |
img_file_buffer = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if img_file_buffer is None: | |
img_file_buffer = st.camera_input("Or click a photo", label_visibility="hidden") | |
if img_file_buffer is not None: | |
# To read image file buffer as a PIL Image: | |
img = Image.open(img_file_buffer) | |
detected_face = mtcnn2(img) | |
if detected_face is None: | |
st.write("No Face Detected") | |
else: | |
detected_face = Image.fromarray(detected_face.numpy().transpose(1, 2, 0).astype(np.uint8)) | |
st.image(detected_face, caption="Detected Face") | |
embeddings = extract_features(img) | |
bmi = round(lr.predict([embeddings])[0], 2) | |
st.write(f"Your BMI is {bmi}") | |