change files
Browse files- app.py +142 -0
- model.pth +3 -0
- requirements.ttx +3 -0
app.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
device = torch.device("cpu")
|
9 |
+
|
10 |
+
class VGGBlock(nn.Module):
|
11 |
+
def __init__(self, in_channels, out_channels, batch_norm=False):
|
12 |
+
super().__init__()
|
13 |
+
conv2_params = {'kernel_size': (3, 3),
|
14 |
+
'stride' : (1, 1),
|
15 |
+
'padding' : 1}
|
16 |
+
|
17 |
+
noop = lambda x : x
|
18 |
+
self._batch_norm = batch_norm
|
19 |
+
|
20 |
+
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels , **conv2_params)
|
21 |
+
self.bn1 = nn.BatchNorm2d(out_channels) if batch_norm else noop
|
22 |
+
|
23 |
+
self.conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, **conv2_params)
|
24 |
+
self.bn2 = nn.BatchNorm2d(out_channels) if batch_norm else noop
|
25 |
+
|
26 |
+
self.max_pooling = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
|
27 |
+
|
28 |
+
@property
|
29 |
+
def batch_norm(self):
|
30 |
+
return self._batch_norm
|
31 |
+
|
32 |
+
def forward(self,x):
|
33 |
+
x = self.conv1(x)
|
34 |
+
x = self.bn1(x)
|
35 |
+
x = F.relu(x)
|
36 |
+
|
37 |
+
x = self.conv2(x)
|
38 |
+
x = self.bn2(x)
|
39 |
+
x = F.relu(x)
|
40 |
+
|
41 |
+
x = self.max_pooling(x)
|
42 |
+
|
43 |
+
return x
|
44 |
+
|
45 |
+
|
46 |
+
class VGG16(nn.Module):
|
47 |
+
def __init__(self, input_size, num_classes=10, batch_norm=False):
|
48 |
+
super(VGG16, self).__init__()
|
49 |
+
|
50 |
+
self.in_channels, self.in_width, self.in_height = input_size
|
51 |
+
|
52 |
+
self.block_1 = VGGBlock(self.in_channels, 64, batch_norm=batch_norm)
|
53 |
+
self.block_2 = VGGBlock(64, 128, batch_norm=batch_norm)
|
54 |
+
self.block_3 = VGGBlock(128, 256, batch_norm=batch_norm)
|
55 |
+
self.block_4 = VGGBlock(256,512, batch_norm=batch_norm)
|
56 |
+
|
57 |
+
self.classifier = nn.Sequential(
|
58 |
+
nn.Linear(2048, 4096),
|
59 |
+
nn.ReLU(True),
|
60 |
+
nn.Dropout(p=0.65),
|
61 |
+
nn.Linear(4096, 4096),
|
62 |
+
nn.ReLU(True),
|
63 |
+
nn.Dropout(p=0.65),
|
64 |
+
nn.Linear(4096, num_classes)
|
65 |
+
)
|
66 |
+
|
67 |
+
@property
|
68 |
+
def input_size(self):
|
69 |
+
return self.in_channels, self.in_width, self.in_height
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
x = self.block_1(x)
|
73 |
+
x = self.block_2(x)
|
74 |
+
x = self.block_3(x)
|
75 |
+
x = self.block_4(x)
|
76 |
+
x = x.view(x.size(0), -1)
|
77 |
+
x = self.classifier(x)
|
78 |
+
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
model = VGG16((1,32,32), batch_norm=True)
|
83 |
+
model.to(device)
|
84 |
+
# Load the saved checkpoint
|
85 |
+
model.load_state_dict(torch.load('model.pth', map_location=device))
|
86 |
+
|
87 |
+
|
88 |
+
label_map = {
|
89 |
+
0: 'T-shirt/top',
|
90 |
+
1: 'Trouser',
|
91 |
+
2: 'Pullover',
|
92 |
+
3: 'Dress',
|
93 |
+
4: 'Coat',
|
94 |
+
5: 'Sandal',
|
95 |
+
6: 'Shirt',
|
96 |
+
7: 'Sneaker',
|
97 |
+
8: 'FLAG{3883}',
|
98 |
+
9: 'Ankle boot'
|
99 |
+
}
|
100 |
+
|
101 |
+
def predict_from_local_image(image: str):
|
102 |
+
# Define the transformation to match the model's input requirements
|
103 |
+
|
104 |
+
transform = transforms.Compose([
|
105 |
+
transforms.Resize((32, 32)), # Resize to the input size of the model
|
106 |
+
transforms.ToTensor(), # Convert the image to a tensor
|
107 |
+
])
|
108 |
+
|
109 |
+
# Load the image
|
110 |
+
image = Image.open(image).convert('L') # Convert numpy array to PIL image and then to grayscale if necessary
|
111 |
+
image = transform(image).unsqueeze(0) # Add batch dimension
|
112 |
+
|
113 |
+
# Move the image to the specified device
|
114 |
+
image = image.to(device)
|
115 |
+
|
116 |
+
# Set the model to evaluation mode
|
117 |
+
model.eval()
|
118 |
+
|
119 |
+
# Make a prediction
|
120 |
+
with torch.no_grad():
|
121 |
+
output = model(image)
|
122 |
+
_, predicted_label = torch.max(output, 1)
|
123 |
+
confidence = torch.nn.functional.softmax(output, dim=1)[0] * 100
|
124 |
+
|
125 |
+
# Get the predicted class label and confidence
|
126 |
+
predicted_class = label_map[predicted_label.item()]
|
127 |
+
predicted_confidence = confidence[predicted_label.item()].item()
|
128 |
+
|
129 |
+
return predicted_class, predicted_confidence
|
130 |
+
|
131 |
+
|
132 |
+
# Gradio interface
|
133 |
+
iface = gr.Interface(
|
134 |
+
fn=predict_from_local_image, # Function to call for prediction
|
135 |
+
inputs=gr.Image(type='filepath', label="Upload an image"), # Input: .pt file upload
|
136 |
+
outputs=gr.Textbox(label="Predicted Class"), # Output: Text showing predicted class
|
137 |
+
title="Vault Challenge 4 - DeepFool", # Title of the interface
|
138 |
+
description="Upload an image, and the model will predict the class. Try to fool the model into predicting the FLAG using DeepFool! Tips: apply DeepFool attack on the image to make the model predict it as a BAG. Note that you should save the adverserial image as a .pt file and upload it to the model to get the FLAG."
|
139 |
+
)
|
140 |
+
|
141 |
+
# Launch the Gradio interface
|
142 |
+
iface.launch()
|
model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d2ddbca9b99982d2cbecbbd61174e4dd3f0a06f92ae3f30bbb45003bb66d1ee
|
3 |
+
size 119648747
|
requirements.ttx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
Pillow
|