Spaces:
Running
Running
import json | |
import logging | |
from pathlib import Path | |
from typing import Callable, Dict, List, Tuple | |
import langcodes as lc | |
import streamlit as st | |
import yaml | |
from datasets.utils.metadata import ( | |
DatasetMetadata, | |
known_creators, | |
known_licenses, | |
known_multilingualities, | |
known_size_categories, | |
known_task_ids, | |
) | |
from apputils import new_state | |
st.set_page_config( | |
page_title="HF Dataset Tagging App", | |
page_icon="https://huggingface.co/front/assets/huggingface_logo.svg", | |
layout="wide", | |
initial_sidebar_state="auto", | |
) | |
# XXX: restyling errors as streamlit does not respect whitespaces on `st.error` and doesn't scroll horizontally, which | |
# generally makes things easier when reading error reports | |
st.markdown( | |
""" | |
<style> | |
div[role=alert] { overflow-x: scroll} | |
div.stAlert p { white-space: pre } | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
######################## | |
## Helper functions | |
######################## | |
def load_ds_datas() -> Dict[str, Dict[str, Dict]]: | |
metada_exports = sorted( | |
[f for f in Path.cwd().iterdir() if f.name.startswith("metadata_")], | |
key=lambda f: f.lstat().st_mtime, | |
reverse=True, | |
) | |
if len(metada_exports) == 0: | |
raise ValueError("need to run ./build_metada_file.py at least once") | |
with metada_exports[0].open() as fi: | |
logging.info(f"loaded {metada_exports[0]}") | |
return json.load(fi) | |
def split_known(vals: List[str], okset: List[str]) -> Tuple[List[str], List[str]]: | |
if vals is None: | |
return [], [] | |
return [v for v in vals if v in okset], [v for v in vals if v not in okset] | |
def multiselect( | |
w: st.delta_generator.DeltaGenerator, | |
title: str, | |
markdown: str, | |
values: List[str], | |
valid_set: List[str], | |
format_func: Callable = str, | |
): | |
valid_values, invalid_values = split_known(values, valid_set) | |
w.markdown(f"#### {title}") | |
if len(invalid_values) > 0: | |
w.markdown("Found the following invalid values:") | |
w.error(invalid_values) | |
return w.multiselect(markdown, valid_set, default=valid_values, format_func=format_func) | |
def validate_dict(w: st.delta_generator.DeltaGenerator, state_dict: Dict): | |
try: | |
DatasetMetadata(**state_dict) | |
w.markdown("β This is a valid tagset! π€") | |
except Exception as e: | |
w.markdown("β This is an invalid tagset, here are the errors in it:") | |
w.error(e) | |
def map_num_examples_to_size_categories(n: int) -> str: | |
if n <= 0: | |
size_cat = "unknown" | |
elif n < 1000: | |
size_cat = "n<1K" | |
elif n < 10000: | |
size_cat = "1K<n<10K" | |
elif n < 100000: | |
size_cat = "10K<n<100K" | |
elif n < 1000000: | |
size_cat = "100K<n<1M" | |
elif n < 10000000: | |
size_cat = "1M<n<10M" | |
elif n < 100000000: | |
size_cat = "10M<n<100M" | |
elif n < 1000000000: | |
size_cat = "100M<n<1B" | |
elif n < 10000000000: | |
size_cat = "1B<n<10B" | |
elif n < 100000000000: | |
size_cat = "10B<n<100B" | |
elif n < 1000000000000: | |
size_cat = "100B<n<1T" | |
else: | |
size_cat = "n>1T" | |
return size_cat | |
def is_state_empty(state: Dict[str, List]) -> bool: | |
return sum(len(v) if v is not None else 0 for v in state.values()) == 0 | |
state = new_state() | |
datasets_md = load_ds_datas() | |
dataset_ids = list(datasets_md.keys()) | |
dataset_id_to_metadata = {name: mds["metadata"] for name, mds in datasets_md.items()} | |
dataset_id_to_infos = {name: mds["infos"] for name, mds in datasets_md.items()} | |
######################## | |
## Dataset selection | |
######################## | |
st.sidebar.markdown( | |
""" | |
# HuggingFace Dataset Tagger | |
This app aims to make it easier to add structured tags to the datasets present in the library. | |
""" | |
) | |
queryparams = st.experimental_get_query_params() | |
preload = queryparams.get("preload_dataset", list()) | |
preloaded_id = None | |
initial_state = None | |
initial_infos, initial_info_cfg = None, None | |
dataset_selector_index = 0 | |
if len(preload) == 1 and preload[0] in dataset_ids: | |
preloaded_id, *_ = preload | |
initial_state = dataset_id_to_metadata.get(preloaded_id) | |
initial_infos = dataset_id_to_infos.get(preloaded_id) | |
initial_info_cfg = next(iter(initial_infos)) if initial_infos is not None else None # pick first available config | |
state = initial_state or new_state() | |
dataset_selector_index = dataset_ids.index(preloaded_id) | |
preloaded_id = st.sidebar.selectbox( | |
label="Choose dataset to load tag set from", options=dataset_ids, index=dataset_selector_index | |
) | |
leftbtn, rightbtn = st.sidebar.columns(2) | |
if leftbtn.button("pre-load"): | |
initial_state = dataset_id_to_metadata[preloaded_id] | |
initial_infos = dataset_id_to_infos[preloaded_id] | |
initial_info_cfg = next(iter(initial_infos)) # pick first available config | |
state = initial_state or new_state() | |
st.experimental_set_query_params(preload_dataset=preloaded_id) | |
if not is_state_empty(state): | |
if rightbtn.button("flush state"): | |
state = new_state() | |
initial_state = None | |
preloaded_id = None | |
st.experimental_set_query_params() | |
if preloaded_id is not None and initial_state is not None: | |
st.sidebar.markdown( | |
f""" | |
--- | |
The current base tagset is [`{preloaded_id}`](https://huggingface.co/datasets/{preloaded_id}) | |
""" | |
) | |
validate_dict(st.sidebar, initial_state) | |
st.sidebar.markdown( | |
f""" | |
Here is the matching yaml block: | |
```yaml | |
{yaml.dump(initial_state)} | |
``` | |
""" | |
) | |
leftcol, _, rightcol = st.columns([12, 1, 12]) | |
# | |
# DATASET NAME | |
# | |
leftcol.markdown("### Dataset name") | |
state["pretty_name"] = leftcol.text_area( | |
"Pick a nice descriptive name for the dataset", | |
) | |
# | |
# TASKS | |
# | |
leftcol.markdown("### Supported tasks") | |
state["task_categories"] = multiselect( | |
leftcol, | |
"Task category", | |
"What categories of task does the dataset support?", | |
values=state["task_categories"], | |
valid_set=list(known_task_ids.keys()), | |
format_func=lambda tg: f"{tg}: {known_task_ids[tg]['description']}", | |
) | |
task_specifics = [] | |
for task_category in state["task_categories"]: | |
specs = multiselect( | |
leftcol, | |
f"Specific _{task_category}_ tasks", | |
f"What specific tasks does the dataset support?", | |
values=[ts for ts in (state["task_ids"] or []) if ts in known_task_ids[task_category]["options"]], | |
valid_set=known_task_ids[task_category]["options"], | |
) | |
if "other" in specs: | |
other_task = leftcol.text_input( | |
"You selected 'other' task. Please enter a short hyphen-separated description for the task:", | |
value="my-task-description", | |
) | |
leftcol.write(f"Registering {task_category}-other-{other_task} task") | |
specs[specs.index("other")] = f"{task_category}-other-{other_task}" | |
task_specifics += specs | |
state["task_ids"] = task_specifics | |
# | |
# LANGUAGES | |
# | |
leftcol.markdown("### Languages") | |
state["multilinguality"] = multiselect( | |
leftcol, | |
"Monolingual?", | |
"Does the dataset contain more than one language?", | |
values=state["multilinguality"], | |
valid_set=list(known_multilingualities.keys()), | |
format_func=lambda m: f"{m} : {known_multilingualities[m]}", | |
) | |
if "other" in state["multilinguality"]: | |
other_multilinguality = leftcol.text_input( | |
"You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:", | |
value="my-multilinguality", | |
) | |
leftcol.write(f"Registering other-{other_multilinguality} multilinguality") | |
state["multilinguality"][state["multilinguality"].index("other")] = f"other-{other_multilinguality}" | |
valid_values, invalid_values = list(), list() | |
for langtag in state["languages"]: | |
try: | |
lc.get(langtag) | |
valid_values.append(langtag) | |
except: | |
invalid_values.append(langtag) | |
leftcol.markdown("#### Languages") | |
if len(invalid_values) > 0: | |
leftcol.markdown("Found the following invalid values:") | |
leftcol.error(invalid_values) | |
langtags = leftcol.text_area( | |
"What languages are represented in the dataset? expected format is BCP47 tags separated for ';' e.g. 'en-US;fr-FR'", | |
value=";".join(valid_values), | |
) | |
state["languages"] = langtags.strip().split(";") if langtags.strip() != "" else [] | |
# | |
# DATASET CREATORS & ORIGINS | |
# | |
leftcol.markdown("### Dataset creators") | |
state["language_creators"] = multiselect( | |
leftcol, | |
"Data origin", | |
"Where does the text in the dataset come from?", | |
values=state["language_creators"], | |
valid_set=known_creators["language"], | |
) | |
state["annotations_creators"] = multiselect( | |
leftcol, | |
"Annotations origin", | |
"Where do the annotations in the dataset come from?", | |
values=state["annotations_creators"], | |
valid_set=known_creators["annotations"], | |
) | |
# | |
# LICENSES | |
# | |
state["licenses"] = multiselect( | |
leftcol, | |
"Licenses", | |
"What licenses is the dataset under?", | |
valid_set=list(known_licenses.keys()), | |
values=state["licenses"], | |
format_func=lambda l: f"{l} : {known_licenses[l]}", | |
) | |
if "other" in state["licenses"]: | |
other_license = st.text_input( | |
"You selected 'other' type of license. Please enter a short hyphen-separated description:", | |
value="my-license", | |
) | |
st.write(f"Registering other-{other_license} license") | |
state["licenses"][state["licenses"].index("other")] = f"other-{other_license}" | |
# | |
# LINK TO SUPPORTED DATASETS | |
# | |
pre_select_ext_a = [] | |
if "original" in state["source_datasets"]: | |
pre_select_ext_a += ["original"] | |
if any([p.startswith("extended") for p in state["source_datasets"]]): | |
pre_select_ext_a += ["extended"] | |
state["source_datasets"] = multiselect( | |
leftcol, | |
"Relations to existing work", | |
"Does the dataset contain original data and/or was it extended from other datasets?", | |
values=pre_select_ext_a, | |
valid_set=["original", "extended"], | |
) | |
if "extended" in state["source_datasets"]: | |
pre_select_ext_b = [p.split("|")[1] for p in state["source_datasets"] if p.startswith("extended|")] | |
extended_sources = multiselect( | |
leftcol, | |
"Linked datasets", | |
"Which other datasets does this one use data from?", | |
values=pre_select_ext_b, | |
valid_set=dataset_ids + ["other"], | |
) | |
# flush placeholder | |
state["source_datasets"].remove("extended") | |
state["source_datasets"] += [f"extended|{src}" for src in extended_sources] | |
# | |
# SIZE CATEGORY | |
# | |
leftcol.markdown("### Size category") | |
logging.info(initial_infos[initial_info_cfg]["splits"] if initial_infos is not None else 0) | |
initial_num_examples = ( | |
sum([dct.get("num_examples", 0) for _split, dct in initial_infos[initial_info_cfg].get("splits", dict()).items()]) | |
if initial_infos is not None | |
else -1 | |
) | |
initial_size_cats = map_num_examples_to_size_categories(initial_num_examples) | |
leftcol.markdown(f"Computed size category from automatically generated dataset info to: `{initial_size_cats}`") | |
current_size_cats = state.get("size_categories") or ["unknown"] | |
ok, nonok = split_known(current_size_cats, known_size_categories) | |
if len(nonok) > 0: | |
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}") | |
else: | |
state["size_categories"] = [initial_size_cats] | |
######################## | |
## Show results | |
######################## | |
rightcol.markdown( | |
f""" | |
### Finalized tag set | |
""" | |
) | |
if is_state_empty(state): | |
rightcol.markdown("β This is an invalid tagset: it's empty!") | |
else: | |
validate_dict(rightcol, state) | |
rightcol.markdown( | |
f""" | |
```yaml | |
{yaml.dump(state)} | |
``` | |
--- | |
#### Arbitrary yaml validator | |
This is a standalone tool, it is useful to check for errors on an existing tagset or modifying directly the text rather than the UI on the left. | |
""", | |
) | |
yamlblock = rightcol.text_area("Input your yaml here") | |
if yamlblock.strip() != "": | |
inputdict = yaml.safe_load(yamlblock) | |
validate_dict(rightcol, inputdict) | |