File size: 17,063 Bytes
be293db
 
 
 
 
 
 
 
 
 
 
160959f
be293db
 
 
 
 
 
cca065e
 
160959f
 
be293db
 
 
 
 
 
cca065e
be293db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbdf16b
 
 
 
 
 
be293db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca065e
be293db
 
 
 
fbdf16b
be293db
 
 
 
 
 
 
 
 
 
160959f
 
d134381
be293db
 
 
 
 
 
 
 
 
 
 
 
 
 
160959f
be293db
d134381
be293db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca065e
be293db
cca065e
be293db
 
cca065e
be293db
 
 
 
 
 
160959f
be293db
 
 
 
 
 
 
160959f
be293db
 
160959f
be293db
 
 
 
 
 
 
160959f
 
fbdf16b
160959f
 
 
 
 
 
 
 
ed58320
 
 
 
 
 
 
 
 
 
160959f
 
be293db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca065e
be293db
 
 
 
 
cca065e
be293db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca065e
be293db
 
 
 
 
cca065e
be293db
 
 
 
 
 
 
 
 
cca065e
be293db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca065e
be293db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca065e
be293db
 
 
 
 
cca065e
be293db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca065e
be293db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca065e
160959f
be293db
 
160959f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be293db
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import copy
import datasets
import json
import os
import streamlit as st
import yaml

from dataclasses import asdict
from glob import glob
from os.path import join as pjoin

st.set_page_config(
    page_title="HF Dataset Tagging App",
    page_icon="https://huggingface.co/front/assets/huggingface_logo.svg",
    layout="wide",
    initial_sidebar_state="auto",
)

task_set = json.load(open("task_set.json"))
license_set = json.load(open("license_set.json"))
language_set_restricted = json.load(open("language_set.json"))
language_set = json.load(open("language_set_full.json"))

multilinguality_set = {
    "monolingual": "contains a single language",
    "multilingual": "contains multiple languages",
    "translation": "contains translated or aligned text",
    "other": "other type of language distribution",
}

creator_set = {
    "language": [
        "found",
        "crowdsourced",
        "expert-generated",
        "machine-generated",
        "other",
    ],
    "annotations": [
        "found",
        "crowdsourced",
        "expert-generated",
        "machine-generated",
        "no-annotation",
        "other",
    ],
}

########################
## Helper functions
########################

@st.cache
def filter_features(feature_dict):
    if feature_dict.get("_type", None) == 'Value':
        return {
            "feature_type": feature_dict["_type"],
            "dtype": feature_dict["dtype"],
        }
    elif feature_dict.get("_type", None) == 'Sequence':
        if "dtype" in feature_dict["feature"]:
            return {
                "feature_type": feature_dict["_type"],
                "feature": filter_features(feature_dict["feature"]),
            }
        elif "_type" in feature_dict["feature"] and feature_dict["feature"]["_type"] == "ClassLabel":
            return {
                "feature_type": feature_dict["_type"],
                "dtype": "int32",
                "feature": filter_features(feature_dict["feature"]),
            }
        else:
            return dict(
                [("feature_type", feature_dict["_type"])] + \
                [(k, filter_features(v)) for k, v in feature_dict["feature"].items()]
            )
    elif feature_dict.get("_type", None) == 'ClassLabel':
        return {
            "feature_type": feature_dict["_type"],
            "dtype": "int32",
            "class_names": feature_dict["names"],
        }
    elif feature_dict.get("_type", None) in ['Translation', 'TranslationVariableLanguages']:
        return {
            "feature_type": feature_dict["_type"],
            "dtype": "string",
            "languages": feature_dict["languages"],
        }
    else:
        return dict([(k, filter_features(v)) for k, v in feature_dict.items()])


@st.cache
def find_languages(feature_dict):
    if type(feature_dict) in [dict, datasets.features.Features]:
        languages = [l for l in feature_dict.get('languages', [])]
        for k, v in feature_dict.items():
            languages += [l  for l in find_languages(v)]
        return languages
    else:
        return []

keep_keys = ['description', 'features', 'homepage', 'license', 'splits']

@st.cache(show_spinner=False)
def get_info_dicts(dataset_id):
    module_path = datasets.load.prepare_module(dataset_id, dataset=True)
    builder_cls = datasets.load.import_main_class(module_path[0], dataset=True)
    build_confs = builder_cls.BUILDER_CONFIGS
    confs = [conf.name for conf in build_confs] if len(build_confs) > 0 else ['default']
    all_info_dicts = {}
    for conf in confs:
        builder = builder_cls(name=conf)
        conf_info_dict = dict([(k, v) for k, v in asdict(builder.info).items() if k in keep_keys])
        all_info_dicts[conf] = conf_info_dict
    return all_info_dicts

@st.cache
def get_dataset_list():
    return datasets.list_datasets()

@st.cache(show_spinner=False)
def load_all_dataset_infos(dataset_list):
    dataset_infos = {}
    for did in dataset_list:
        try:
            dataset_infos[did] = get_info_dicts(did)
        except:
            print("+++++++++++ MISSED", did)
    return dataset_infos

def load_existing_tags():
    has_tags = {}
    for fname in glob("saved_tags/*/*/tags.json"):
        _, did, cid, _ = fname.split('/')
        has_tags[did] = has_tags.get(did, {})
        has_tags[did][cid] = fname
    return has_tags

########################
## Dataset selection
########################

st.sidebar.markdown(
    """<center>
<a href="https://github.com/huggingface/datasets">
<img src="https://raw.githubusercontent.com/huggingface/datasets/master/docs/source/imgs/datasets_logo_name.jpg" width="200"></a>
</center>""",
    unsafe_allow_html=True,
)

app_desc = """
### Dataset Tagger

This app aims to make it easier to add structured tags to the datasets present in the library.

Each configuration requires its own tasks, as these often correspond to distinct sub-tasks. However, we provide the opportunity
to pre-load the tag sets from another dataset or configuration to avoid too much redundancy.

The tag sets are saved in JSON format, but you can print a YAML version in the right-most column to copy-paste to the config README.md
"""

all_dataset_ids = copy.deepcopy(get_dataset_list())
existing_tag_sets = load_existing_tags()
all_dataset_infos = load_all_dataset_infos(all_dataset_ids)

st.sidebar.markdown(app_desc)

# option to only select from datasets that still need to be annotated
only_missing = st.sidebar.checkbox("Show only un-annotated configs")

if only_missing:
    dataset_choose_list = ["local dataset"] + [did for did, c_dict in all_dataset_infos.items()
                               if not all([cid in existing_tag_sets.get(did, {}) for cid in c_dict])]
else:
    dataset_choose_list = ["local dataset"] + list(all_dataset_infos.keys())

dataset_id = st.sidebar.selectbox(
    label="Choose dataset to tag",
    options=dataset_choose_list,
    index=0,
)

if dataset_id == "local dataset":
    path_to_info = st.sidebar.text_input("Please enter the path to the folder where the dataset_infos.json file was generated", "/path/to/dataset/")
    if path_to_info not in ["/path/to/dataset/", ""]:
        dataset_infos = json.load(open(pjoin(path_to_info, "dataset_infos.json")))
        confs = dataset_infos.keys()
        all_info_dicts = {}
        for conf, info in dataset_infos.items():
            conf_info_dict = dict([(k, info[k]) for k in keep_keys])
            all_info_dicts[conf] = conf_info_dict
        dataset_id = list(dataset_infos.values())[0]["builder_name"]
    else:
        dataset_id = "tmp_dir"
        all_info_dicts = {
            "default":{
                'description': "",
                'features': {},
                'homepage': "",
                'license': "",
                'splits': {},
            }
        }
else:
    all_info_dicts = all_dataset_infos[dataset_id]

if only_missing:
    config_choose_list = [cid for cid in all_info_dicts
                              if not cid in existing_tag_sets.get(dataset_id, {})]
else:
    config_choose_list = list(all_info_dicts.keys())

config_id = st.sidebar.selectbox(
    label="Choose configuration",
    options=config_choose_list,
)

config_infos = all_info_dicts[config_id]

c1, _, c2, _, c3 = st.beta_columns([8, 1, 14, 1, 10])

########################
## Dataset description
########################

data_desc = f"### Dataset: {dataset_id} | Configuration: {config_id}" + "\n"
data_desc += f"[Homepage]({config_infos['homepage']})" + " | "
data_desc += f"[Data script](https://github.com/huggingface/datasets/blob/master/datasets/{dataset_id}/{dataset_id}.py)" + " | "
data_desc += f"[View examples](https://huggingface.co/nlp/viewer/?dataset={dataset_id}&config={config_id})"
c1.markdown(data_desc)

with c1.beta_expander("Dataset description:", expanded=True):
    st.markdown(config_infos['description'])

# "pretty-fy" the features to be a little easier to read
features = filter_features(config_infos['features'])
with c1.beta_expander(f"Dataset features for config: {config_id}", expanded=True):
    st.write(features)

########################
## Dataset tagging
########################

c2.markdown(f"### Writing tags for: {dataset_id} / {config_id}")

##########
# Pre-load information to speed things up
##########
c2.markdown("#### Pre-loading an existing tag set")

existing_tag_sets = load_existing_tags()

pre_loaded = {
    "task_categories": [],
    "task_ids": [],
    "multilinguality": [],
    "languages": [],
    "language_creators": [],
    "annotations_creators": [],
    "source_datasets": [],
    "size_categories": [],
    "licenses": [],
}

if existing_tag_sets.get(dataset_id, {}).get(config_id, None) is not None:
    existing_tags_fname = existing_tag_sets[dataset_id][config_id]
    c2.markdown(f"#### Attention: this config already has a tagset saved in {existing_tags_fname}\n---  \n")
    if c2.checkbox("pre-load existing tag set"):
        pre_loaded = json.load(open(existing_tags_fname))

c2.markdown("> *You may choose to pre-load the tag set of another dataset or configuration:*")

with c2.beta_expander("- Choose tag set to pre-load"):
    did_choice_list = list(existing_tag_sets.keys())
    if len(existing_tag_sets) > 0:
        did = st.selectbox(
            label="Choose dataset to load tag set from",
            options=did_choice_list,
            index=did_choice_list.index(dataset_id) if dataset_id in did_choice_list else 0,
        )
        cid = st.selectbox(
            label="Choose config to load tag set from",
            options=list(existing_tag_sets[did].keys()),
            index=0,
        )
        if st.checkbox("pre-load this tag set"):
            pre_loaded = json.load(open(existing_tag_sets[did][cid]))
    else:
        st.write("There are currently no other saved tag sets.")

pre_loaded["languages"] = list(set(pre_loaded["languages"] + find_languages(features)))
if config_infos["license"] in license_set:
    pre_loaded["licenses"] = list(set(pre_loaded["licenses"] + [config_infos["license"]]))

##########
# Modify or add new tags
##########
c2.markdown("#### Editing the tag set")
c2.markdown("> *Expand the following boxes to edit the tag set. For each of the questions, choose all that apply, at least one option:*")

with c2.beta_expander("- Supported tasks"):
    task_categories = st.multiselect(
        "What categories of task does the dataset support?",
        options=list(task_set.keys()),
        default=pre_loaded["task_categories"],
        format_func=lambda tg: f"{tg} : {task_set[tg]['description']}",
    )
    task_specifics = []
    for tg in task_categories:
        task_specs = st.multiselect(
            f"What specific *{tg}* tasks does the dataset support?",
            options=task_set[tg]["options"],
            default=[ts for ts in pre_loaded["task_ids"] if ts in task_set[tg]["options"]],
        )
        if "other" in task_specs:
            other_task = st.text_input(
                "You selected 'other' task. Please enter a short hyphen-separated description for the task:",
                value='my-task-description',
            )
            st.write(f"Registering {tg}-other-{other_task} task")
            task_specs[task_specs.index("other")] = f"{tg}-other-{other_task}"
        task_specifics += task_specs

with c2.beta_expander("- Languages"):
    multilinguality = st.multiselect(
        "Does the dataset contain more than one language?",
        options=list(multilinguality_set.keys()),
        default=pre_loaded["multilinguality"],
        format_func= lambda m: f"{m} : {multilinguality_set[m]}",
    )
    if "other" in multilinguality:
        other_multilinguality = st.text_input(
            "You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
            value='my-multilinguality',
        )
        st.write(f"Registering other-{other_multilinguality} multilinguality")
        multilinguality[multilinguality.index("other")] = f"other-{other_multilinguality}"
    languages = st.multiselect(
        "What languages are represented in the dataset?",
        options=list(language_set.keys()),
        default=pre_loaded["languages"],
        format_func= lambda m: f"{m} : {language_set[m]}",
    )

with c2.beta_expander("- Dataset creators"):
    language_creators = st.multiselect(
        "Where does the text in the dataset come from?",
        options=creator_set["language"],
        default=pre_loaded["language_creators"],
    )
    annotations_creators = st.multiselect(
        "Where do the annotations in the dataset come from?",
        options=creator_set["annotations"],
        default=pre_loaded["annotations_creators"],
    )
    licenses = st.multiselect(
        "What licenses is the dataset under?",
        options=list(license_set.keys()),
        default=pre_loaded["licenses"],
        format_func= lambda l: f"{l} : {license_set[l]}",
    )
    if "other" in licenses:
        other_license = st.text_input(
            "You selected 'other' type of license. Please enter a short hyphen-separated description:",
            value='my-license',
        )
        st.write(f"Registering other-{other_license} license")
        licenses[licenses.index("other")] = f"other-{other_license}"
    # link ro supported datasets
    pre_select_ext_a = []
    if "original" in pre_loaded["source_datasets"]:
        pre_select_ext_a += ["original"]
    if any([p.startswith("extended") for p in pre_loaded["source_datasets"]]):
        pre_select_ext_a += ["extended"]
    extended = st.multiselect(
        "Does the dataset contain original data and/or was it extended from other datasets?",
        options=["original", "extended"],
        default=pre_select_ext_a,
    )
    source_datasets = ["original"] if "original" in extended else []
    if "extended" in extended:
        pre_select_ext_b = [p.split('|')[1] for p in pre_loaded["source_datasets"] if p.startswith("extended")]
        extended_sources = st.multiselect(
            "Which other datasets does this one use data from?",
            options=all_dataset_ids,
            default=pre_select_ext_b,
        )
        if "other" in extended_sources:
            other_extended_sources = st.text_input(
                "You selected 'other' dataset. Please enter a short hyphen-separated description:",
                value='my-dataset',
            )
            st.write(f"Registering other-{other_extended_sources} dataset")
            extended_sources[extended_sources.index("other")] = f"other-{other_extended_sources}"
        source_datasets += [f"extended|{src}" for src in extended_sources]

num_examples = (
    sum([dct.get('num_examples', 0) for spl, dct in config_infos['splits'].items()])
    if config_infos.get('splits', None) is not None
    else -1
)
if num_examples < 0:
    size_cat = "unknown"
elif num_examples < 1000:
    size_cat = "n<1K"
elif num_examples < 10000:
    size_cat = "1K<n<10K"
elif num_examples < 100000:
    size_cat = "10K<n<100K"
elif num_examples < 1000000:
    size_cat = "100K<n<1M"
else:
    size_cat = "n>1M"

res = {
    "task_categories": task_categories,
    "task_ids": task_specifics,
    "multilinguality": multilinguality,
    "languages": languages,
    "language_creators": language_creators,
    "annotations_creators": annotations_creators,
    "source_datasets": source_datasets,
    "size_categories": [size_cat],
    "licenses": licenses,
}

########################
## Show results
########################
c3.markdown("### Finalized tag set:")

if c3.button("Done? Save to File!"):
    if not os.path.isdir(pjoin('saved_tags', dataset_id)):
        _ = os.mkdir(pjoin('saved_tags', dataset_id))
    if not os.path.isdir(pjoin('saved_tags', dataset_id, config_id)):
        _ = os.mkdir(pjoin('saved_tags', dataset_id, config_id))
    json.dump(res, open(pjoin('saved_tags', dataset_id, config_id, 'tags.json'), 'w'))

with c3.beta_expander("Show JSON output for the current config"):
    st.write(res)

with c3.beta_expander("Show YAML output aggregating the tags saved for all configs"):
    task_saved_configs = dict([
        (fname.split('/')[-2], json.load(open(fname)))
        for fname in glob(f"saved_tags/{dataset_id}/*/tags.json")
    ])
    aggregate_config = {}
    for conf_name, saved_tags in task_saved_configs.items():
        for tag_k, tag_ls in saved_tags.items():
            aggregate_config[tag_k] = aggregate_config.get(tag_k, {})
            aggregate_config[tag_k][conf_name] = tuple(sorted(tag_ls))
    for tag_k in aggregate_config:
        if len(set(aggregate_config[tag_k].values())) == 1:
            aggregate_config[tag_k] = list(list(set(aggregate_config[tag_k].values()))[0])
        else:
            for conf_name in aggregate_config[tag_k]:
                aggregate_config[tag_k][conf_name] = list(aggregate_config[tag_k][conf_name])
    st.text(yaml.dump(aggregate_config))

c3.markdown("---  ")

with c3.beta_expander("----> show full task set <----", expanded=True):
    st.write(task_set)