Spaces:
Running
Running
File size: 17,207 Bytes
be293db 6356cbd be293db 6356cbd be293db 6356cbd 160959f be293db cca065e 160959f be293db cca065e be293db fbdf16b be293db cca065e be293db fbdf16b be293db 160959f d134381 be293db 160959f be293db d134381 be293db 6356cbd be293db cca065e be293db cca065e be293db cca065e be293db 6356cbd be293db 6356cbd be293db 160959f be293db 160959f be293db 6356cbd 160959f 6356cbd 160959f ed58320 be293db cca065e be293db cca065e be293db cca065e be293db cca065e be293db cca065e be293db cca065e be293db cca065e be293db cca065e be293db cca065e be293db cca065e 160959f be293db 160959f 6356cbd 160959f be293db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import copy
import datasets
import json
import os
import streamlit as st
import sys
import yaml
from dataclasses import asdict
from pathlib import Path
from typing import Dict
from glob import glob
from os.path import join as pjoin
load_remote_datasets = "--load_remote_datasets" in sys.argv[1:]
st.set_page_config(
page_title="HF Dataset Tagging App",
page_icon="https://huggingface.co/front/assets/huggingface_logo.svg",
layout="wide",
initial_sidebar_state="auto",
)
task_set = json.load(open("task_set.json"))
license_set = json.load(open("license_set.json"))
language_set_restricted = json.load(open("language_set.json"))
language_set = json.load(open("language_set_full.json"))
multilinguality_set = {
"monolingual": "contains a single language",
"multilingual": "contains multiple languages",
"translation": "contains translated or aligned text",
"other": "other type of language distribution",
}
creator_set = {
"language": [
"found",
"crowdsourced",
"expert-generated",
"machine-generated",
"other",
],
"annotations": [
"found",
"crowdsourced",
"expert-generated",
"machine-generated",
"no-annotation",
"other",
],
}
########################
## Helper functions
########################
@st.cache
def filter_features(feature_dict):
if feature_dict.get("_type", None) == 'Value':
return {
"feature_type": feature_dict["_type"],
"dtype": feature_dict["dtype"],
}
elif feature_dict.get("_type", None) == 'Sequence':
if "dtype" in feature_dict["feature"]:
return {
"feature_type": feature_dict["_type"],
"feature": filter_features(feature_dict["feature"]),
}
elif "_type" in feature_dict["feature"] and feature_dict["feature"]["_type"] == "ClassLabel":
return {
"feature_type": feature_dict["_type"],
"dtype": "int32",
"feature": filter_features(feature_dict["feature"]),
}
else:
return dict(
[("feature_type", feature_dict["_type"])] + \
[(k, filter_features(v)) for k, v in feature_dict["feature"].items()]
)
elif feature_dict.get("_type", None) == 'ClassLabel':
return {
"feature_type": feature_dict["_type"],
"dtype": "int32",
"class_names": feature_dict["names"],
}
elif feature_dict.get("_type", None) in ['Translation', 'TranslationVariableLanguages']:
return {
"feature_type": feature_dict["_type"],
"dtype": "string",
"languages": feature_dict["languages"],
}
else:
return dict([(k, filter_features(v)) for k, v in feature_dict.items()])
@st.cache
def find_languages(feature_dict):
if type(feature_dict) in [dict, datasets.features.Features]:
languages = [l for l in feature_dict.get('languages', [])]
for k, v in feature_dict.items():
languages += [l for l in find_languages(v)]
return languages
else:
return []
keep_keys = ['description', 'features', 'homepage', 'license', 'splits']
@st.cache(show_spinner=False)
def get_info_dicts(dataset_id):
module_path = datasets.load.prepare_module(dataset_id, dataset=True)
builder_cls = datasets.load.import_main_class(module_path[0], dataset=True)
build_confs = builder_cls.BUILDER_CONFIGS
confs = [conf.name for conf in build_confs] if len(build_confs) > 0 else ['default']
all_info_dicts = {}
for conf in confs:
builder = builder_cls(name=conf)
conf_info_dict = dict([(k, v) for k, v in asdict(builder.info).items() if k in keep_keys])
all_info_dicts[conf] = conf_info_dict
return all_info_dicts
@st.cache
def get_dataset_list():
return datasets.list_datasets()
@st.cache(show_spinner=False)
def load_all_dataset_infos(dataset_list):
dataset_infos = {}
for did in dataset_list:
try:
dataset_infos[did] = get_info_dicts(did)
except:
print("+++++++++++ MISSED", did)
return dataset_infos
def load_existing_tags():
has_tags = {}
for fname in glob("saved_tags/*/*/tags.json"):
_, did, cid, _ = fname.split(os.sep)
has_tags[did] = has_tags.get(did, {})
has_tags[did][cid] = fname
return has_tags
########################
## Dataset selection
########################
st.sidebar.markdown(
"""<center>
<a href="https://github.com/huggingface/datasets">
<img src="https://raw.githubusercontent.com/huggingface/datasets/master/docs/source/imgs/datasets_logo_name.jpg" width="200"></a>
</center>""",
unsafe_allow_html=True,
)
app_desc = """
### Dataset Tagger
This app aims to make it easier to add structured tags to the datasets present in the library.
Each configuration requires its own tasks, as these often correspond to distinct sub-tasks. However, we provide the opportunity
to pre-load the tag sets from another dataset or configuration to avoid too much redundancy.
The tag sets are saved in JSON format, but you can print a YAML version in the right-most column to copy-paste to the config README.md
"""
existing_tag_sets = load_existing_tags()
all_dataset_ids = list(existing_tag_sets.keys()) if not load_remote_datasets else copy.deepcopy(get_dataset_list())
all_dataset_infos = {} if not load_remote_datasets else load_all_dataset_infos(all_dataset_ids)
st.sidebar.markdown(app_desc)
# option to only select from datasets that still need to be annotated
only_missing = st.sidebar.checkbox("Show only un-annotated configs")
if only_missing:
dataset_choose_list = ["local dataset"] + [did for did, c_dict in all_dataset_infos.items()
if not all([cid in existing_tag_sets.get(did, {}) for cid in c_dict])]
else:
dataset_choose_list = ["local dataset"] + list(all_dataset_infos.keys())
dataset_id = st.sidebar.selectbox(
label="Choose dataset to tag",
options=dataset_choose_list,
index=0,
)
all_info_dicts = {}
if dataset_id == "local dataset":
path_to_info = st.sidebar.text_input("Please enter the path to the folder where the dataset_infos.json file was generated", "/path/to/dataset/")
if path_to_info != "/path/to/dataset/":
dataset_infos = json.load(open(pjoin(path_to_info, "dataset_infos.json")))
confs = dataset_infos.keys()
all_info_dicts = {}
for conf, info in dataset_infos.items():
conf_info_dict = dict([(k, info[k]) for k in keep_keys])
all_info_dicts[conf] = conf_info_dict
dataset_id = list(dataset_infos.values())[0]["builder_name"]
else:
dataset_id = "tmp_dir"
all_info_dicts = {
"default":{
'description': "",
'features': {},
'homepage': "",
'license': "",
'splits': {},
}
}
if only_missing:
config_choose_list = [cid for cid in all_info_dicts
if not cid in existing_tag_sets.get(dataset_id, {})]
else:
config_choose_list = list(all_info_dicts.keys())
config_id = st.sidebar.selectbox(
label="Choose configuration",
options=config_choose_list,
)
config_infos = all_info_dicts[config_id]
c1, _, c2, _, c3 = st.beta_columns([8, 1, 14, 1, 10])
########################
## Dataset description
########################
data_desc = f"### Dataset: {dataset_id} | Configuration: {config_id}" + "\n"
data_desc += f"[Homepage]({config_infos['homepage']})" + " | "
data_desc += f"[Data script](https://github.com/huggingface/datasets/blob/master/datasets/{dataset_id}/{dataset_id}.py)" + " | "
data_desc += f"[View examples](https://huggingface.co/nlp/viewer/?dataset={dataset_id}&config={config_id})"
c1.markdown(data_desc)
with c1.beta_expander("Dataset description:", expanded=True):
st.markdown(config_infos['description'])
# "pretty-fy" the features to be a little easier to read
features = filter_features(config_infos['features'])
with c1.beta_expander(f"Dataset features for config: {config_id}", expanded=True):
st.write(features)
########################
## Dataset tagging
########################
c2.markdown(f"### Writing tags for: {dataset_id} / {config_id}")
##########
# Pre-load information to speed things up
##########
c2.markdown("#### Pre-loading an existing tag set")
pre_loaded = {
"task_categories": [],
"task_ids": [],
"multilinguality": [],
"languages": [],
"language_creators": [],
"annotations_creators": [],
"source_datasets": [],
"size_categories": [],
"licenses": [],
}
if existing_tag_sets.get(dataset_id, {}).get(config_id, None) is not None:
existing_tags_fname = existing_tag_sets[dataset_id][config_id]
c2.markdown(f"#### Attention: this config already has a tagset saved in {existing_tags_fname}\n--- \n")
if c2.checkbox("pre-load existing tag set"):
pre_loaded = json.load(open(existing_tags_fname))
c2.markdown("> *You may choose to pre-load the tag set of another dataset or configuration:*")
with c2.beta_expander("- Choose tag set to pre-load"):
did_choice_list = list(existing_tag_sets.keys())
if len(existing_tag_sets) > 0:
did = st.selectbox(
label="Choose dataset to load tag set from",
options=did_choice_list,
index=did_choice_list.index(dataset_id) if dataset_id in did_choice_list else 0,
)
cid = st.selectbox(
label="Choose config to load tag set from",
options=list(existing_tag_sets[did].keys()),
index=0,
)
if st.checkbox("pre-load this tag set"):
pre_loaded = json.load(open(existing_tag_sets[did][cid]))
else:
st.write("There are currently no other saved tag sets.")
pre_loaded["languages"] = list(set(pre_loaded["languages"] + find_languages(features)))
if config_infos["license"] in license_set:
pre_loaded["licenses"] = list(set(pre_loaded["licenses"] + [config_infos["license"]]))
##########
# Modify or add new tags
##########
c2.markdown("#### Editing the tag set")
c2.markdown("> *Expand the following boxes to edit the tag set. For each of the questions, choose all that apply, at least one option:*")
with c2.beta_expander("- Supported tasks"):
task_categories = st.multiselect(
"What categories of task does the dataset support?",
options=list(task_set.keys()),
default=pre_loaded["task_categories"],
format_func=lambda tg: f"{tg} : {task_set[tg]['description']}",
)
task_specifics = []
for tg in task_categories:
task_specs = st.multiselect(
f"What specific *{tg}* tasks does the dataset support?",
options=task_set[tg]["options"],
default=[ts for ts in pre_loaded["task_ids"] if ts in task_set[tg]["options"]],
)
if "other" in task_specs:
other_task = st.text_input(
"You selected 'other' task. Please enter a short hyphen-separated description for the task:",
value='my-task-description',
)
st.write(f"Registering {tg}-other-{other_task} task")
task_specs[task_specs.index("other")] = f"{tg}-other-{other_task}"
task_specifics += task_specs
with c2.beta_expander("- Languages"):
multilinguality = st.multiselect(
"Does the dataset contain more than one language?",
options=list(multilinguality_set.keys()),
default=pre_loaded["multilinguality"],
format_func= lambda m: f"{m} : {multilinguality_set[m]}",
)
if "other" in multilinguality:
other_multilinguality = st.text_input(
"You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
value='my-multilinguality',
)
st.write(f"Registering other-{other_multilinguality} multilinguality")
multilinguality[multilinguality.index("other")] = f"other-{other_multilinguality}"
languages = st.multiselect(
"What languages are represented in the dataset?",
options=list(language_set.keys()),
default=pre_loaded["languages"],
format_func= lambda m: f"{m} : {language_set[m]}",
)
with c2.beta_expander("- Dataset creators"):
language_creators = st.multiselect(
"Where does the text in the dataset come from?",
options=creator_set["language"],
default=pre_loaded["language_creators"],
)
annotations_creators = st.multiselect(
"Where do the annotations in the dataset come from?",
options=creator_set["annotations"],
default=pre_loaded["annotations_creators"],
)
licenses = st.multiselect(
"What licenses is the dataset under?",
options=list(license_set.keys()),
default=pre_loaded["licenses"],
format_func= lambda l: f"{l} : {license_set[l]}",
)
if "other" in licenses:
other_license = st.text_input(
"You selected 'other' type of license. Please enter a short hyphen-separated description:",
value='my-license',
)
st.write(f"Registering other-{other_license} license")
licenses[licenses.index("other")] = f"other-{other_license}"
# link ro supported datasets
pre_select_ext_a = []
if "original" in pre_loaded["source_datasets"]:
pre_select_ext_a += ["original"]
if any([p.startswith("extended") for p in pre_loaded["source_datasets"]]):
pre_select_ext_a += ["extended"]
extended = st.multiselect(
"Does the dataset contain original data and/or was it extended from other datasets?",
options=["original", "extended"],
default=pre_select_ext_a,
)
source_datasets = ["original"] if "original" in extended else []
if "extended" in extended:
pre_select_ext_b = [p.split('|')[1] for p in pre_loaded["source_datasets"] if p.startswith("extended")]
extended_sources = st.multiselect(
"Which other datasets does this one use data from?",
options=all_dataset_ids,
default=pre_select_ext_b,
)
if "other" in extended_sources:
other_extended_sources = st.text_input(
"You selected 'other' dataset. Please enter a short hyphen-separated description:",
value='my-dataset',
)
st.write(f"Registering other-{other_extended_sources} dataset")
extended_sources[extended_sources.index("other")] = f"other-{other_extended_sources}"
source_datasets += [f"extended|{src}" for src in extended_sources]
num_examples = (
sum([dct.get('num_examples', 0) for spl, dct in config_infos['splits'].items()])
if config_infos.get('splits', None) is not None
else -1
)
if num_examples < 0:
size_cat = "unknown"
elif num_examples < 1000:
size_cat = "n<1K"
elif num_examples < 10000:
size_cat = "1K<n<10K"
elif num_examples < 100000:
size_cat = "10K<n<100K"
elif num_examples < 1000000:
size_cat = "100K<n<1M"
else:
size_cat = "n>1M"
res = {
"task_categories": task_categories,
"task_ids": task_specifics,
"multilinguality": multilinguality,
"languages": languages,
"language_creators": language_creators,
"annotations_creators": annotations_creators,
"source_datasets": source_datasets,
"size_categories": [size_cat],
"licenses": licenses,
}
########################
## Show results
########################
c3.markdown("### Finalized tag set:")
if c3.button("Done? Save to File!"):
if not os.path.isdir(pjoin('saved_tags', dataset_id)):
_ = os.mkdir(pjoin('saved_tags', dataset_id))
if not os.path.isdir(pjoin('saved_tags', dataset_id, config_id)):
_ = os.mkdir(pjoin('saved_tags', dataset_id, config_id))
json.dump(res, open(pjoin('saved_tags', dataset_id, config_id, 'tags.json'), 'w'))
with c3.beta_expander("Show JSON output for the current config"):
st.write(res)
with c3.beta_expander("Show YAML output aggregating the tags saved for all configs"):
task_saved_configs = dict([
(Path(fname).parent.name, json.load(open(fname)))
for fname in glob(f"saved_tags/{dataset_id}/*/tags.json")
])
aggregate_config = {}
for conf_name, saved_tags in task_saved_configs.items():
for tag_k, tag_ls in saved_tags.items():
aggregate_config[tag_k] = aggregate_config.get(tag_k, {})
aggregate_config[tag_k][conf_name] = tuple(sorted(tag_ls))
for tag_k in aggregate_config:
if len(set(aggregate_config[tag_k].values())) == 1:
aggregate_config[tag_k] = list(list(set(aggregate_config[tag_k].values()))[0])
else:
for conf_name in aggregate_config[tag_k]:
aggregate_config[tag_k][conf_name] = list(aggregate_config[tag_k][conf_name])
st.text(yaml.dump(aggregate_config))
c3.markdown("--- ")
with c3.beta_expander("----> show full task set <----", expanded=True):
st.write(task_set)
|