Spaces:
Running
Running
File size: 10,793 Bytes
be293db 8b77729 1cc3978 be293db 08a65ff 326ad7e 6356cbd 160959f be293db cca065e 160959f be293db cca065e be293db 8b77729 26742b2 8b77729 be293db 08a65ff 26742b2 1cc3978 26742b2 08a65ff 26742b2 8b77729 08a65ff be293db 08a65ff be293db cca065e be293db cca065e be293db 08a65ff b468d19 08a65ff be293db 326ad7e 8b77729 326ad7e 8b77729 08a65ff 8b77729 326ad7e 8b77729 08a65ff 326ad7e 8b77729 326ad7e 8b77729 26742b2 326ad7e 08a65ff be293db 326ad7e 1cc3978 26742b2 326ad7e 26742b2 326ad7e 26742b2 8b77729 be293db 8b77729 be293db 08a65ff 326ad7e 26742b2 08a65ff 26742b2 08a65ff 326ad7e 26742b2 326ad7e 26742b2 be293db 326ad7e 08a65ff be293db 08a65ff 326ad7e 08a65ff 8b77729 08a65ff 326ad7e 26742b2 08a65ff 26742b2 08a65ff 8b77729 326ad7e 08a65ff be293db 08a65ff 326ad7e 8b77729 326ad7e 26742b2 08a65ff 26742b2 8b77729 08a65ff be293db 8b77729 08a65ff 326ad7e 26742b2 08a65ff 26742b2 08a65ff 326ad7e 26742b2 08a65ff 26742b2 08a65ff 8b77729 26742b2 326ad7e 26742b2 08a65ff 26742b2 08a65ff 326ad7e 08a65ff be293db 08a65ff 326ad7e 26742b2 08a65ff 26742b2 08a65ff 26742b2 08a65ff 326ad7e 26742b2 08a65ff 26742b2 08a65ff 326ad7e 26742b2 326ad7e 26742b2 08a65ff 26742b2 be293db 08a65ff be293db 08a65ff 326ad7e 8b77729 26742b2 8b77729 326ad7e cca065e 08a65ff 1cc3978 08a65ff 8b77729 326ad7e 8b77729 08a65ff 326ad7e 1cc3978 326ad7e 08a65ff 1cc3978 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import json
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import streamlit as st
import yaml
from datasets.utils.metadata_validator import DatasetMetadata
st.set_page_config(
page_title="HF Dataset Tagging App",
page_icon="https://huggingface.co/front/assets/huggingface_logo.svg",
layout="wide",
initial_sidebar_state="auto",
)
task_set = json.load(open("task_set.json"))
license_set = json.load(open("license_set.json"))
language_set_restricted = json.load(open("language_set.json"))
multilinguality_set = {
"monolingual": "contains a single language",
"multilingual": "contains multiple languages",
"translation": "contains translated or aligned text",
"other": "other type of language distribution",
}
creator_set = {
"language": [
"found",
"crowdsourced",
"expert-generated",
"machine-generated",
"other",
],
"annotations": [
"found",
"crowdsourced",
"expert-generated",
"machine-generated",
"no-annotation",
"other",
],
}
########################
## Helper functions
########################
def load_ds_datas():
metada_exports = sorted(
[f for f in Path.cwd().iterdir() if f.name.startswith("metadata_")],
key=lambda f: f.lstat().st_mtime,
reverse=True,
)
if len(metada_exports) == 0:
raise ValueError("need to run ./build_metada_file.py at least once")
with metada_exports[0].open() as fi:
return json.load(fi)
def split_known(vals: List[str], okset: List[str]) -> Tuple[List[str], List[str]]:
if vals is None:
return [], []
return [v for v in vals if v in okset], [v for v in vals if v not in okset]
def multiselect(
w: st.delta_generator.DeltaGenerator,
title: str,
markdown: str,
values: List[str],
valid_set: List[str],
format_func: Callable = str,
):
valid_values, invalid_values = split_known(values, valid_set)
w.markdown(
"""
#### {title}
{errors}
""".format(
title=title, errors="" if len(invalid_values) == 0 else f"_Found invalid values:_ `{invalid_values}`"
)
)
return w.multiselect(markdown, valid_set, default=valid_values, format_func=format_func)
def validate_dict(state_dict: Dict) -> str:
try:
DatasetMetadata(**state_dict)
valid = "✔️ This is a valid tagset! 🤗"
except Exception as e:
valid = f"""
🙁 This is an invalid tagset, here are the errors in it:
```
{e}
```
You're _very_ welcome to fix these issues and submit a new PR on [`datasets`](https://github.com/huggingface/datasets/)
"""
return valid
def new_state():
return {
"task_categories": [],
"task_ids": [],
"multilinguality": [],
"languages": [],
"language_creators": [],
"annotations_creators": [],
"source_datasets": [],
"size_categories": [],
"licenses": [],
}
state = new_state()
datasets_md = load_ds_datas()
existing_tag_sets = {name: mds["metadata"] for name, mds in datasets_md.items()}
all_dataset_ids = list(existing_tag_sets.keys())
########################
## Dataset selection
########################
st.sidebar.markdown(
"""
# HuggingFace Dataset Tagger
This app aims to make it easier to add structured tags to the datasets present in the library.
Each configuration requires its own tasks, as these often correspond to distinct sub-tasks. However, we provide the opportunity
to pre-load the tag sets from another dataset or configuration to avoid too much redundancy.
The tag sets are saved in JSON format, but you can print a YAML version in the right-most column to copy-paste to the config README.md
### Preloading an existing tag set
You can load an existing tag set to get started if you want.
Beware that clicking pre-load will overwrite the current state!
"""
)
queryparams = st.experimental_get_query_params()
preload = queryparams.get("preload_dataset", list())
preloaded_id = None
initial_state = None
did_index = 0
if len(preload) == 1 and preload[0] in all_dataset_ids:
preloaded_id, *_ = preload
initial_state = existing_tag_sets.get(preloaded_id)
state = initial_state or new_state()
did_index = all_dataset_ids.index(preloaded_id)
preloaded_id = st.sidebar.selectbox(
label="Choose dataset to load tag set from", options=all_dataset_ids, index=did_index
)
leftbtn, rightbtn = st.sidebar.beta_columns(2)
if leftbtn.button("pre-load"):
initial_state = existing_tag_sets[preloaded_id]
state = initial_state or new_state()
st.experimental_set_query_params(preload_dataset=preloaded_id)
if rightbtn.button("flush state"):
state = new_state()
initial_state = None
preloaded_id = None
st.experimental_set_query_params()
if preloaded_id is not None and initial_state is not None:
valid = validate_dict(initial_state)
st.sidebar.markdown(
f"""
---
The current base tagset is [`{preloaded_id}`](https://huggingface.co/datasets/{preloaded_id})
{valid}
Here is the matching yaml block:
```yaml
{yaml.dump(initial_state)}
```
"""
)
leftcol, _, rightcol = st.beta_columns([12, 1, 12])
leftcol.markdown("### Supported tasks")
state["task_categories"] = multiselect(
leftcol,
"Task category",
"What categories of task does the dataset support?",
values=state["task_categories"],
valid_set=list(task_set.keys()),
format_func=lambda tg: f"{tg}: {task_set[tg]['description']}",
)
task_specifics = []
for tg in state["task_categories"]:
specs = multiselect(
leftcol,
f"Specific _{tg}_ tasks",
f"What specific tasks does the dataset support?",
values=[ts for ts in (state["task_ids"] or []) if ts in task_set[tg]["options"]],
valid_set=task_set[tg]["options"],
)
if "other" in specs:
other_task = st.text_input(
"You selected 'other' task. Please enter a short hyphen-separated description for the task:",
value="my-task-description",
)
st.write(f"Registering {tg}-other-{other_task} task")
specs[specs.index("other")] = f"{tg}-other-{other_task}"
task_specifics += specs
state["task_ids"] = task_specifics
leftcol.markdown("### Languages")
state["multilinguality"] = multiselect(
leftcol,
"Monolingual?",
"Does the dataset contain more than one language?",
values=state["multilinguality"],
valid_set=list(multilinguality_set.keys()),
format_func=lambda m: f"{m} : {multilinguality_set[m]}",
)
if "other" in state["multilinguality"]:
other_multilinguality = st.text_input(
"You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
value="my-multilinguality",
)
st.write(f"Registering other-{other_multilinguality} multilinguality")
state["multilinguality"][state["multilinguality"].index("other")] = f"other-{other_multilinguality}"
state["languages"] = multiselect(
leftcol,
"Languages",
"What languages are represented in the dataset?",
values=state["languages"],
valid_set=list(language_set_restricted.keys()),
format_func=lambda m: f"{m} : {language_set_restricted[m]}",
)
leftcol.markdown("### Dataset creators")
state["language_creators"] = multiselect(
leftcol,
"Data origin",
"Where does the text in the dataset come from?",
values=state["language_creators"],
valid_set=creator_set["language"],
)
state["annotations_creators"] = multiselect(
leftcol,
"Annotations origin",
"Where do the annotations in the dataset come from?",
values=state["annotations_creators"],
valid_set=creator_set["annotations"],
)
state["licenses"] = multiselect(
leftcol,
"Licenses",
"What licenses is the dataset under?",
valid_set=list(license_set.keys()),
values=state["licenses"],
format_func=lambda l: f"{l} : {license_set[l]}",
)
if "other" in state["licenses"]:
other_license = st.text_input(
"You selected 'other' type of license. Please enter a short hyphen-separated description:",
value="my-license",
)
st.write(f"Registering other-{other_license} license")
state["licenses"][state["licenses"].index("other")] = f"other-{other_license}"
# link to supported datasets
pre_select_ext_a = []
if "original" in state["source_datasets"]:
pre_select_ext_a += ["original"]
if any([p.startswith("extended") for p in state["source_datasets"]]):
pre_select_ext_a += ["extended"]
state["extended"] = multiselect(
leftcol,
"Relations to existing work",
"Does the dataset contain original data and/or was it extended from other datasets?",
values=pre_select_ext_a,
valid_set=["original", "extended"],
)
state["source_datasets"] = ["original"] if "original" in state["extended"] else []
if "extended" in state["extended"]:
pre_select_ext_b = [p.split("|")[1] for p in state["source_datasets"] if p.startswith("extended")]
extended_sources = multiselect(
leftcol,
"Linked datasets",
"Which other datasets does this one use data from?",
values=pre_select_ext_b,
valid_set=all_dataset_ids + ["other"],
)
if "other" in extended_sources:
other_extended_sources = st.text_input(
"You selected 'other' dataset. Please enter a short hyphen-separated description:",
value="my-dataset",
)
st.write(f"Registering other-{other_extended_sources} dataset")
extended_sources[extended_sources.index("other")] = f"other-{other_extended_sources}"
state["source_datasets"] += [f"extended|{src}" for src in extended_sources]
size_cats = ["unknown", "n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "n>1M"]
current_size_cats = state.get("size_categories") or ["unknown"]
ok, nonok = split_known(current_size_cats, size_cats)
if len(nonok) > 0:
leftcol.markdown(f"**Found bad codes in existing tagset**:\n{nonok}")
state["size_categories"] = [
leftcol.selectbox(
"What is the size category of the dataset?",
options=size_cats,
index=size_cats.index(ok[0]) if len(ok) > 0 else 0,
)
]
########################
## Show results
########################
valid = validate_dict(state)
rightcol.markdown(
f"""
### Finalized tag set
{valid}
```yaml
{yaml.dump(state)}
```
---
#### Arbitrary yaml validator
This is a standalone tool, it is useful to check for errors on an existing tagset or modifying directly the text rather than the UI on the left.
""",
)
yamlblock = rightcol.text_area("Input your yaml here")
if yamlblock.strip() != "":
inputdict = yaml.safe_load(yamlblock)
valid = validate_dict(inputdict)
rightcol.markdown(valid)
|