Spaces:
Runtime error
Runtime error
import torch | |
from typing import Any | |
from transformers.tools.base import Tool | |
from transformers.utils import is_accelerate_available | |
from diffusers import DiffusionPipeline | |
if is_accelerate_available(): | |
from accelerate import PartialState | |
TEXT_TO_VIDEO_DESCRIPTION = ( | |
"This is a tool that creates a video according to a text description." | |
"It takes an optional input `seconds` which will be the duration of the video." | |
"The default is of two seconds. The tool outputs a video object." | |
) | |
class TextToVideoTool(Tool): | |
default_checkpoint = "damo-vilab/text-to-video-ms-1.7b" | |
description = TEXT_TO_VIDEO_DESCRIPTION | |
name = "video_generator" | |
inputs = {"prompt": {"type": str, "description": "contains the image description"}} | |
output_type = Any | |
def __init__(self, device=None, **hub_kwargs) -> None: | |
if not is_accelerate_available(): | |
raise ImportError("Accelerate should be installed in order to use tools.") | |
super().__init__() | |
self.device = device | |
self.pipeline = None | |
self.hub_kwargs = hub_kwargs | |
def setup(self): | |
if self.device is None: | |
self.device = PartialState().default_device | |
self.pipeline = DiffusionPipeline.from_pretrained( | |
self.default_checkpoint, variant="fp16" | |
) | |
self.pipeline.to(self.device) | |
self.is_initialized = True | |
def __call__(self, prompt, seconds=2): | |
if not self.is_initialized: | |
self.setup() | |
return self.pipeline(prompt, num_frames=8 * seconds).frames | |