radames's picture
cache control
6132304
raw
history blame
8.99 kB
import io
import base64
import os
from random import sample
from sched import scheduler
import uvicorn
from fastapi import FastAPI, Response, BackgroundTasks, HTTPException, UploadFile, File, status
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
import httpx
from urllib.parse import urljoin
import numpy as np
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline
from PIL import Image
from PIL import ImageOps
import gradio as gr
import base64
import skimage
import skimage.measure
from utils import *
import boto3
import magic
AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID')
AWS_SECRET_KEY = os.getenv('AWS_SECRET_KEY')
AWS_S3_BUCKET_NAME = os.getenv('AWS_S3_BUCKET_NAME')
FILE_TYPES = {
'image/png': 'png',
'image/jpeg': 'jpg',
}
WHITES = 66846720
MASK = Image.open("mask.png")
app = FastAPI()
auth_token = os.environ.get("API_TOKEN") or True
s3 = boto3.client(service_name='s3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_KEY)
try:
SAMPLING_MODE = Image.Resampling.LANCZOS
except Exception as e:
SAMPLING_MODE = Image.LANCZOS
blocks = gr.Blocks().queue()
model = {}
def get_model():
if "text2img" not in model:
text2img = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=auth_token,
).to("cuda")
inpaint = StableDiffusionInpaintPipeline(
vae=text2img.vae,
text_encoder=text2img.text_encoder,
tokenizer=text2img.tokenizer,
unet=text2img.unet,
scheduler=text2img.scheduler,
safety_checker=text2img.safety_checker,
feature_extractor=text2img.feature_extractor,
).to("cuda")
# lms = LMSDiscreteScheduler(
# beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
# img2img = StableDiffusionImg2ImgPipeline(
# vae=text2img.vae,
# text_encoder=text2img.text_encoder,
# tokenizer=text2img.tokenizer,
# unet=text2img.unet,
# scheduler=lms,
# safety_checker=text2img.safety_checker,
# feature_extractor=text2img.feature_extractor,
# ).to("cuda")
# try:
# total_memory = torch.cuda.get_device_properties(0).total_memory // (
# 1024 ** 3
# )
# if total_memory <= 5:
# inpaint.enable_attention_slicing()
# except:
# pass
model["text2img"] = text2img
model["inpaint"] = inpaint
# model["img2img"] = img2img
return model["text2img"], model["inpaint"]
# model["img2img"]
get_model()
def run_outpaint(
input_image,
prompt_text,
strength,
guidance,
step,
fill_mode,
):
text2img, inpaint = get_model()
sel_buffer = np.array(input_image)
img = sel_buffer[:, :, 0:3]
mask = sel_buffer[:, :, -1]
process_size = 512
mask_sum = mask.sum()
# if mask_sum >= WHITES:
# print("inpaiting with fixed Mask")
# mask = np.array(MASK)[:, :, 0]
# img, mask = functbl[fill_mode](img, mask)
# init_image = Image.fromarray(img)
# mask = 255 - mask
# mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
# mask = mask.repeat(8, axis=0).repeat(8, axis=1)
# mask_image = Image.fromarray(mask)
# # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
# with autocast("cuda"):
# images = inpaint(
# prompt=prompt_text,
# init_image=init_image.resize(
# (process_size, process_size), resample=SAMPLING_MODE
# ),
# mask_image=mask_image.resize((process_size, process_size)),
# strength=strength,
# num_inference_steps=step,
# guidance_scale=guidance,
# )
if mask_sum > 0:
print("inpainting")
img, mask = functbl[fill_mode](img, mask)
init_image = Image.fromarray(img)
mask = 255 - mask
mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
mask = mask.repeat(8, axis=0).repeat(8, axis=1)
mask_image = Image.fromarray(mask)
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
with autocast("cuda"):
images = inpaint(
prompt=prompt_text,
init_image=init_image.resize(
(process_size, process_size), resample=SAMPLING_MODE
),
mask_image=mask_image.resize((process_size, process_size)),
strength=strength,
num_inference_steps=step,
guidance_scale=guidance,
)
else:
print("text2image")
with autocast("cuda"):
images = text2img(
prompt=prompt_text, height=process_size, width=process_size,
)
return images['sample'][0], images["nsfw_content_detected"][0]
with blocks as demo:
with gr.Row():
with gr.Column(scale=3, min_width=270):
sd_prompt = gr.Textbox(
label="Prompt", placeholder="input your prompt here", lines=4
)
with gr.Column(scale=2, min_width=150):
sd_strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01
)
with gr.Column(scale=1, min_width=150):
sd_step = gr.Number(label="Step", value=50, precision=0)
sd_guidance = gr.Number(label="Guidance", value=7.5)
with gr.Row():
with gr.Column(scale=4, min_width=600):
init_mode = gr.Radio(
label="Init mode",
choices=[
"patchmatch",
"edge_pad",
"cv2_ns",
"cv2_telea",
"gaussian",
"perlin",
],
value="patchmatch",
type="value",
)
model_input = gr.Image(label="Input", type="pil", image_mode="RGBA")
proceed_button = gr.Button("Proceed", elem_id="proceed")
model_output = gr.Image(label="Output")
is_nsfw = gr.JSON()
proceed_button.click(
fn=run_outpaint,
inputs=[
model_input,
sd_prompt,
sd_strength,
sd_guidance,
sd_step,
init_mode,
],
outputs=[model_output, is_nsfw],
)
blocks.config['dev_mode'] = False
# S3_HOST = "https://s3.amazonaws.com"
# @app.get("/uploads/{path:path}")
# async def uploads(path: str, response: Response):
# async with httpx.AsyncClient() as client:
# proxy = await client.get(f"{S3_HOST}/{path}")
# response.body = proxy.content
# response.status_code = proxy.status_code
# response.headers['Access-Control-Allow-Origin'] = '*'
# response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, OPTIONS'
# response.headers['Access-Control-Allow-Headers'] = 'Authorization, Content-Type'
# response.headers['Cache-Control'] = 'max-age=31536000'
# return response
@app.post('/uploadfile/')
async def create_upload_file(background_tasks: BackgroundTasks, file: UploadFile):
contents = await file.read()
file_size = len(contents)
if not 0 < file_size < 2E+06:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail='Supported file size is less than 2 MB'
)
file_type = magic.from_buffer(contents, mime=True)
if file_type.lower() not in FILE_TYPES:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f'Unsupported file type {file_type}. Supported types are {FILE_TYPES}'
)
temp_file = io.BytesIO()
temp_file.write(contents)
temp_file.seek(0)
s3.upload_fileobj(Fileobj=temp_file, Bucket=AWS_S3_BUCKET_NAME, Key="uploads/" +
file.filename, ExtraArgs={"ContentType": file.content_type, "CacheControl": "max-age=31536000"})
temp_file.close()
return {"url": f'https://d26smi9133w0oo.cloudfront.net/uploads/{file.filename}', "filename": file.filename}
app = gr.mount_gradio_app(app, blocks, "/gradio",
gradio_api_url="http://0.0.0.0:7860/gradio/")
app.mount("/", StaticFiles(directory="../static", html=True), name="static")
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860,
log_level="debug", reload=False)