File size: 8,579 Bytes
3aa0ca8
 
 
eebec00
 
 
3aa0ca8
f734c44
3aa0ca8
 
 
f734c44
3aa0ca8
eebec00
f734c44
eebec00
 
 
 
 
 
 
 
3aa0ca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f734c44
 
 
 
 
 
 
 
 
 
 
3aa0ca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eebec00
3aa0ca8
 
 
 
 
 
15417c3
3aa0ca8
eebec00
 
 
 
 
 
f734c44
 
eebec00
 
 
f734c44
 
 
 
 
 
 
 
 
eebec00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aa0ca8
eebec00
3aa0ca8
 
 
 
15417c3
3aa0ca8
eebec00
 
15417c3
eebec00
3aa0ca8
15417c3
3aa0ca8
15417c3
eebec00
3aa0ca8
 
 
 
e5bd30a
 
 
 
 
 
f734c44
3aa0ca8
 
 
 
 
eebec00
 
 
 
 
 
 
 
 
3aa0ca8
 
 
 
eebec00
 
 
 
 
 
 
3aa0ca8
 
 
 
f734c44
3aa0ca8
 
 
 
 
 
f734c44
3aa0ca8
 
 
 
f734c44
3aa0ca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eebec00
3aa0ca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eebec00
3aa0ca8
 
 
 
 
 
eebec00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5353a0b
f734c44
eebec00
 
5353a0b
eebec00
 
 
 
 
 
 
 
 
 
8b618de
eebec00
 
 
3aa0ca8
 
 
 
 
eebec00
3aa0ca8
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import torch
import gradio as gr
from PIL import Image
import qrcode
from pathlib import Path

from diffusers import (
    StableDiffusionPipeline,
    StableDiffusionControlNetImg2ImgPipeline,
    ControlNetModel,
    DDIMScheduler,
    DPMSolverMultistepScheduler,
)

from PIL import Image

qrcode_generator = qrcode.QRCode(
    version=1,
    error_correction=qrcode.constants.ERROR_CORRECT_H,
    box_size=10,
    border=0,
)

controlnet = ControlNetModel.from_pretrained(
    "DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
)

pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    controlnet=controlnet,
    safety_checker=None,
    torch_dtype=torch.float16,
)

pipe.enable_xformers_memory_efficient_attention()
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()


sd_pipe = StableDiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16
)
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to("cuda")


sd_pipe.enable_xformers_memory_efficient_attention()
sd_pipe.enable_model_cpu_offload()


def resize_for_condition_image(input_image: Image.Image, resolution: int):
    input_image = input_image.convert("RGB")
    W, H = input_image.size
    k = float(resolution) / min(H, W)
    H *= k
    W *= k
    H = int(round(H / 64.0)) * 64
    W = int(round(W / 64.0)) * 64
    img = input_image.resize((W, H), resample=Image.LANCZOS)
    return img


def inference(
    init_image: Image.Image,
    qrcode_image: Image.Image,
    qr_code_content: str,
    prompt: str,
    negative_prompt: str,
    guidance_scale: float = 10.0,
    controlnet_conditioning_scale: float = 2.0,
    strength: float = 0.8,
    seed: int = -1,
    num_inference_steps: int = 30,
):
    if prompt is None or prompt == "":
        raise gr.Error("Prompt is required")

    if qrcode_image is None and qr_code_content is None:
        raise gr.Error("QR Code Image or QR Code Content is required")

    generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()

    if init_image is None:
        print("Generating random image from prompt using Stable Diffusion")
        # generate image from prompt
        out = sd_pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            generator=generator,
            num_inference_steps=25,
            num_images_per_prompt=1,
        )  # type: ignore

        init_image = out.images[0]

    if qr_code_content is not None or qr_code_content != "":
        print("Generating QR Code from content")
        qr = qrcode.QRCode(
            version=1,
            error_correction=qrcode.constants.ERROR_CORRECT_H,
            box_size=10,
            border=4,
        )
        qr.add_data(qr_code_content)
        qr.make(fit=True)

        qrcode_image = qr.make_image(fill_color="black", back_color="white")
        qrcode_image = resize_for_condition_image(qrcode_image, 768)
    else:
        print("Using QR Code Image")
        qrcode_image = resize_for_condition_image(qrcode_image, 768)

    init_image = resize_for_condition_image(init_image, 768)

    out = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=init_image,
        control_image=qrcode_image,  # type: ignore
        width=768,  # type: ignore
        height=768,  # type: ignore
        guidance_scale=float(guidance_scale),
        controlnet_conditioning_scale=float(controlnet_conditioning_scale),  # type: ignore
        generator=generator,
        strength=float(strength),
        num_inference_steps=num_inference_steps,
    )
    return out.images[0]  # type: ignore


with gr.Blocks() as blocks:
    gr.Markdown(
        """
# AI QR Code Generator

model: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v1p_sd15

<a href="https://huggingface.co/spaces/huggingface-projects/AI-QR-code-generator?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for no queue on your own hardware.</p>
                """
    )

    with gr.Row():
        with gr.Column():
            qr_code_content = gr.Textbox(
                label="QR Code Content",
                info="QR Code Content or URL",
                value="",
            )
            prompt = gr.Textbox(
                label="Prompt",
                info="Prompt is required. If init image is not provided, then it will be generated from prompt using Stable Diffusion 2.1",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                value="ugly, disfigured, low quality, blurry, nsfw",
            )
            init_image = gr.Image(label="Init Image (Optional)", type="pil")

            qr_code_image = gr.Image(
                label="QR Code Image (Optional)",
                type="pil",
            )

            with gr.Accordion(label="Params"):
                guidance_scale = gr.Slider(
                    minimum=0.0,
                    maximum=50.0,
                    step=0.01,
                    value=10.0,
                    label="Guidance Scale",
                )
                controlnet_conditioning_scale = gr.Slider(
                    minimum=0.0,
                    maximum=5.0,
                    step=0.01,
                    value=2.0,
                    label="Controlnet Conditioning Scale",
                )
                strength = gr.Slider(
                    minimum=0.0, maximum=1.0, step=0.01, value=0.8, label="Strength"
                )
                seed = gr.Slider(
                    minimum=-1,
                    maximum=9999999999,
                    step=1,
                    value=2313123,
                    label="Seed",
                    randomize=True,
                )
            run_btn = gr.Button("Run")
        with gr.Column():
            result_image = gr.Image(label="Result Image")
    run_btn.click(
        inference,
        inputs=[
            init_image,
            qr_code_image,
            qr_code_content,
            prompt,
            negative_prompt,
            guidance_scale,
            controlnet_conditioning_scale,
            strength,
            seed,
        ],
        outputs=[result_image],
    )

    gr.Examples(
        examples=[
            [
                "./examples/init.jpeg",
                "./examples/qrcode.png",
                "",
                "crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
                "ugly, disfigured, low quality, blurry, nsfw",
                10.0,
                2.0,
                0.8,
                2313123,
            ],
            [
                "./examples/init.jpeg",
                None,
                "https://huggingface.co",
                "crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
                "ugly, disfigured, low quality, blurry, nsfw",
                10.0,
                2.0,
                0.8,
                2313123,
            ],
            [
                None,
                None,
                "https://huggingface.co/spaces/huggingface-projects/AI-QR-code-generator",
                "beautiful sunset in San Francisco with Golden Gate bridge in the background",
                "ugly, disfigured, low quality, blurry, nsfw",
                10.0,
                2.7,
                0.8,
                2313123,
            ],
            [
                None,
                None,
                "https://huggingface.co",
                "A flying cat over a jungle",
                "ugly, disfigured, low quality, blurry, nsfw",
                10.0,
                2.7,
                0.8,
                2313123,
            ],
        ],
        fn=inference,
        inputs=[
            init_image,
            qr_code_image,
            qr_code_content,
            prompt,
            negative_prompt,
            guidance_scale,
            controlnet_conditioning_scale,
            strength,
            seed,
        ],
        outputs=[result_image],
    )

blocks.queue()
blocks.launch()