Spaces:
Running
Running
File size: 6,798 Bytes
98b1c51 1e5090f 447c0ca 7764421 9db8ced 3a01622 7764421 0819256 f09c5f3 0819256 ddbe7d2 f09c5f3 cd6894d 9187ced 10d7a5a 9187ced 25c844d 9187ced 50d8483 9187ced 9437108 9187ced 9db8ced 9187ced 5f78b90 14f0244 5f78b90 9187ced 9db8ced 2606dde 9187ced 0e5c445 41f29a4 3a01622 9187ced 7764421 98b1c51 9187ced 0819256 9437108 0819256 ddbe7d2 0819256 cc79662 0819256 4af31ae 0819256 9187ced 0819256 9187ced 9db8ced 98b1c51 9db8ced 14f0244 5a31018 14f0244 3ebd3a8 cb000d3 a99cca3 f12455d 14f0244 9db8ced 2606dde b7b2c8c 98b1c51 b7b2c8c 98b1c51 b7b2c8c 9187ced 77adc4d 9db8ced 98b1c51 9db8ced 9187ced 41f29a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import { env } from "$env/dynamic/private";
import type { ChatTemplateInput } from "$lib/types/Template";
import { compileTemplate } from "$lib/utils/template";
import { z } from "zod";
import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints";
import endpointTgi from "./endpoints/tgi/endpointTgi";
import { sum } from "$lib/utils/sum";
import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels";
import type { PreTrainedTokenizer } from "@xenova/transformers";
import JSON5 from "json5";
import { getTokenizer } from "$lib/utils/getTokenizer";
import { logger } from "$lib/server/logger";
type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>;
const modelConfig = z.object({
/** Used as an identifier in DB */
id: z.string().optional(),
/** Used to link to the model page, and for inference */
name: z.string().default(""),
displayName: z.string().min(1).optional(),
description: z.string().min(1).optional(),
logoUrl: z.string().url().optional(),
websiteUrl: z.string().url().optional(),
modelUrl: z.string().url().optional(),
tokenizer: z
.union([
z.string(),
z.object({
tokenizerUrl: z.string().url(),
tokenizerConfigUrl: z.string().url(),
}),
])
.optional(),
datasetName: z.string().min(1).optional(),
datasetUrl: z.string().url().optional(),
preprompt: z.string().default(""),
prepromptUrl: z.string().url().optional(),
chatPromptTemplate: z.string().optional(),
promptExamples: z
.array(
z.object({
title: z.string().min(1),
prompt: z.string().min(1),
})
)
.optional(),
endpoints: z.array(endpointSchema).optional(),
parameters: z
.object({
temperature: z.number().min(0).max(1).optional(),
truncate: z.number().int().positive().optional(),
max_new_tokens: z.number().int().positive().optional(),
stop: z.array(z.string()).optional(),
top_p: z.number().positive().optional(),
top_k: z.number().positive().optional(),
repetition_penalty: z.number().min(-2).max(2).optional(),
})
.passthrough()
.optional(),
multimodal: z.boolean().default(false),
unlisted: z.boolean().default(false),
embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(),
});
const modelsRaw = z.array(modelConfig).parse(JSON5.parse(env.MODELS));
async function getChatPromptRender(
m: z.infer<typeof modelConfig>
): Promise<ReturnType<typeof compileTemplate<ChatTemplateInput>>> {
if (m.chatPromptTemplate) {
return compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m);
}
let tokenizer: PreTrainedTokenizer;
if (!m.tokenizer) {
return compileTemplate<ChatTemplateInput>(
"{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}",
m
);
}
try {
tokenizer = await getTokenizer(m.tokenizer);
} catch (e) {
logger.error(
"Failed to load tokenizer for model " +
m.name +
" consider setting chatPromptTemplate manually or making sure the model is available on the hub. Error: " +
(e as Error).message
);
process.exit();
}
const renderTemplate = ({ messages, preprompt }: ChatTemplateInput) => {
let formattedMessages: { role: string; content: string }[] = messages.map((message) => ({
content: message.content,
role: message.from,
}));
if (preprompt) {
formattedMessages = [
{
role: "system",
content: preprompt,
},
...formattedMessages,
];
}
const output = tokenizer.apply_chat_template(formattedMessages, {
tokenize: false,
add_generation_prompt: true,
});
if (typeof output !== "string") {
throw new Error("Failed to apply chat template, the output is not a string");
}
return output;
};
return renderTemplate;
}
const processModel = async (m: z.infer<typeof modelConfig>) => ({
...m,
chatPromptRender: await getChatPromptRender(m),
id: m.id || m.name,
displayName: m.displayName || m.name,
preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt,
parameters: { ...m.parameters, stop_sequences: m.parameters?.stop },
});
const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({
...m,
getEndpoint: async (): Promise<Endpoint> => {
if (!m.endpoints) {
return endpointTgi({
type: "tgi",
url: `${env.HF_API_ROOT}/${m.name}`,
accessToken: env.HF_TOKEN ?? env.HF_ACCESS_TOKEN,
weight: 1,
model: m,
});
}
const totalWeight = sum(m.endpoints.map((e) => e.weight));
let random = Math.random() * totalWeight;
for (const endpoint of m.endpoints) {
if (random < endpoint.weight) {
const args = { ...endpoint, model: m };
switch (args.type) {
case "tgi":
return endpoints.tgi(args);
case "anthropic":
return endpoints.anthropic(args);
case "aws":
return await endpoints.aws(args);
case "openai":
return await endpoints.openai(args);
case "llamacpp":
return endpoints.llamacpp(args);
case "ollama":
return endpoints.ollama(args);
case "vertex":
return await endpoints.vertex(args);
case "cloudflare":
return await endpoints.cloudflare(args);
case "cohere":
return await endpoints.cohere(args);
case "langserve":
return await endpoints.langserve(args);
default:
// for legacy reason
return endpoints.tgi(args);
}
}
random -= endpoint.weight;
}
throw new Error(`Failed to select endpoint`);
},
});
export const models = await Promise.all(modelsRaw.map((e) => processModel(e).then(addEndpoint)));
export const defaultModel = models[0];
// Models that have been deprecated
export const oldModels = env.OLD_MODELS
? z
.array(
z.object({
id: z.string().optional(),
name: z.string().min(1),
displayName: z.string().min(1).optional(),
})
)
.parse(JSON5.parse(env.OLD_MODELS))
.map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name }))
: [];
export const validateModel = (_models: BackendModel[]) => {
// Zod enum function requires 2 parameters
return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]);
};
// if `TASK_MODEL` is string & name of a model in `MODELS`, then we use `MODELS[TASK_MODEL]`, else we try to parse `TASK_MODEL` as a model config itself
export const smallModel = env.TASK_MODEL
? (models.find((m) => m.name === env.TASK_MODEL) ||
(await processModel(modelConfig.parse(JSON5.parse(env.TASK_MODEL))).then((m) =>
addEndpoint(m)
))) ??
defaultModel
: defaultModel;
export type BackendModel = Optional<
typeof defaultModel,
"preprompt" | "parameters" | "multimodal" | "unlisted"
>;
|