vampnet-opera / vampnet /modules /transformer.py
hugo flores garcia
recovering from a gittastrophe
41b9d24
raw
history blame
32.1 kB
import math
import logging
from typing import Optional, Tuple, Union, List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import loralib as lora
import audiotools as at
from .activations import get_activation
from .layers import CodebookEmbedding
from .layers import FiLM
from .layers import SequentialWithFiLM
from .layers import WNConv1d
from ..util import scalar_to_batch_tensor, codebook_flatten, codebook_unflatten
from ..mask import _gamma
LORA_R = 8
# def log(t, eps=1e-20):
# return torch.log(t + eps)
def gumbel_noise_like(t):
noise = torch.zeros_like(t).uniform_(1e-20, 1)
return -torch.log(-torch.log(noise))
def gumbel_sample(t, temperature=1.0, dim=-1):
return ((t / max(temperature, 1e-10)) + gumbel_noise_like(t)).argmax(dim=dim)
class RMSNorm(nn.Module):
def __init__(self, hidden_size: int, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.var_eps = eps
def forward(self, x):
"""Returns root mean square normalized version of input `x`
# T5 uses a layer_norm which only scales and doesn't shift, which is also known
# as Root Mean Square Layer Normalization https://arxiv.org/abs/1910.07467
# thus varience is calculated w/o mean and there is no bias
Parameters
----------
x : Tensor[B x T x D]
Returns
-------
Tensor[B x T x D]
"""
var = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(var + self.var_eps)
return self.weight * x
class FeedForward(nn.Module):
def __init__(
self, d_model: int = 512, dropout: float = 0.1, activation: str = "geglu"
):
super().__init__()
factor = 2 if activation == "geglu" else 1
self.w_1 = lora.Linear(d_model, d_model * 4, bias=False, r=LORA_R)
self.w_2 = lora.Linear(d_model * 4 // factor, d_model, bias=False, r=LORA_R)
self.drop = nn.Dropout(dropout)
self.act = get_activation(activation)()
def forward(self, x):
"""Computes position-wise feed-forward layer
Parameters
----------
x : Tensor[B x T x D]
Returns
-------
Tensor[B x T x D]
"""
x = self.w_1(x)
x = self.act(x)
x = self.drop(x)
x = self.w_2(x)
return x
class MultiHeadRelativeAttention(nn.Module):
def __init__(
self,
n_head: int = 8,
d_model: int = 512,
dropout: float = 0.1,
bidirectional: bool = True,
has_relative_attention_bias: bool = True,
attention_num_buckets: int = 32,
attention_max_distance: int = 128,
):
super().__init__()
d_head = d_model // n_head
self.n_head = n_head
self.d_head = d_head
self.bidirectional = bidirectional
self.has_relative_attention_bias = has_relative_attention_bias
self.attention_num_buckets = attention_num_buckets
self.attention_max_distance = attention_max_distance
# Create linear query, key, value projections
self.w_qs = lora.Linear(d_model, d_model, bias=False, r=LORA_R)
self.w_ks = nn.Linear(d_model, d_model, bias=False)
self.w_vs = lora.Linear(d_model, d_model, bias=False, r=LORA_R)
# Create linear final output projection
self.fc = lora.Linear(d_model, d_model, bias=False, r=LORA_R)
# Dropout for attention output weights
self.dropout = nn.Dropout(dropout)
# Create relative positional embeddings (if turned on)
if has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(attention_num_buckets, n_head)
def _relative_position_bucket(self, relative_position):
"""Converts unbounded relative position into bounded set of buckets
with half "exact" buckets (1 position = 1 bucket) and half "log-spaced"
buckets
Parameters
----------
relative_position : Tensor[T_q x T_kv]
Relative positions between queries and key_value items
Returns
-------
Tensor[T_q x T_kv]
Input relative positions converted into buckets
"""
relative_buckets = 0
num_buckets = self.attention_num_buckets
max_distance = self.attention_max_distance
# Convert relative position for (-inf, inf) to [0, inf]
# Negative relative positions correspond to past
# Positive relative positions correspond to future
if self.bidirectional:
# use half buckets for each side (past / future)
num_buckets //= 2
# Shift the position positions by `num_buckets` to wrap around
# negative positions
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
# If not bidirectional, ignore positive positions and wrap
# negative positions to positive
relative_position = -torch.min(
relative_position, torch.zeros_like(relative_position)
)
# Allocate half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in
# positions up to `max_distance`
relative_postion_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
# Clip the max relative position to `num_buckets - 1`
relative_postion_if_large = torch.min(
relative_postion_if_large,
torch.full_like(relative_postion_if_large, num_buckets - 1),
)
# Choose relative buckets based on small or large positions
relative_buckets += torch.where(
is_small, relative_position, relative_postion_if_large
)
return relative_buckets
def compute_bias(self, query_length, key_length):
"""Computes a position bias scalar for each index in query_length x key_length
Parameters
----------
query_length : int
key_length : int
Returns
-------
Tensor[heads x 1 x T_q x T_kv]
Position bias to be applied on attention logits
"""
query_position = torch.arange(query_length, dtype=torch.long)[:, None]
key_position = torch.arange(key_length, dtype=torch.long)[None, :]
relative_position = key_position - query_position
# Convert relative position to buckets
relative_position_bucket = self._relative_position_bucket(relative_position)
relative_position_bucket = relative_position_bucket.to(
self.relative_attention_bias.weight.device
)
# Index attention bias values
values = self.relative_attention_bias(relative_position_bucket)
values = rearrange(values, "q k h -> h 1 q k")
return values
def forward(self, q, k, v, mask=None, position_bias=None):
"""Computes attention over (keys, values) for every timestep in query
Parameters
----------
q : Tensor[B x T_q x d_model]
Query vectors
k : Tensor[B x T_kv x d_model]
Key vectors to compute attention over
v : Tensor[B x T_kv x d_model]
Value vectors corresponding to the keys
mask : Tensor[B x T_q x T_kv], optional
position_bias: Tensor[head x 1 x T_q x T_kv]
Returns
-------
Tensor[B x T_q x d_model]
Outputs after attending (key, value) using queries
"""
# Compute query, key, value projections
q = rearrange(self.w_qs(q), "b l (head k) -> head b l k", head=self.n_head)
k = rearrange(self.w_ks(k), "b t (head k) -> head b t k", head=self.n_head)
v = rearrange(self.w_vs(v), "b t (head k) -> head b t k", head=self.n_head)
# Compute attention matrix
attn = torch.einsum("hblk,hbtk->hblt", [q, k]) / np.sqrt(q.shape[-1])
# Add relative position bias to attention scores
if position_bias is None:
if self.has_relative_attention_bias:
position_bias = self.compute_bias(q.size(-2), k.size(-2))
else:
position_bias = torch.zeros_like(attn)
attn += position_bias
# Apply mask to attention scores to prevent looking up invalid locations
if mask is not None:
attn = attn.masked_fill(mask[None] == 0, -1e9)
# Normalize attention scores and add dropout
attn = torch.softmax(attn, dim=3)
attn = self.dropout(attn)
# Compute attended outputs (product of attention matrix and values)
output = torch.einsum("hblt,hbtv->hblv", [attn, v])
output = rearrange(output, "head b l v -> b l (head v)")
output = self.fc(output)
return output, position_bias
class TransformerLayer(nn.Module):
def __init__(
self,
d_model: int = 512,
d_cond: int = 64,
n_heads: int = 8,
bidirectional: bool = True,
is_decoder: bool = False,
has_relative_attention_bias: bool = False,
flash_attn: bool = False,
dropout: float = 0.1,
):
super().__init__()
# Store args
self.is_decoder = is_decoder
# Create self-attention layer
self.norm_1 = RMSNorm(d_model)
self.film_1 = FiLM(d_cond, d_model)
self.flash_attn = flash_attn
if flash_attn:
from flash_attn.flash_attention import FlashMHA
self.self_attn = FlashMHA(
embed_dim=d_model,
num_heads=n_heads,
attention_dropout=dropout,
causal=False,
)
else:
self.self_attn = MultiHeadRelativeAttention(
n_heads, d_model, dropout, bidirectional, has_relative_attention_bias
)
# (Optional) Create cross-attention layer
if is_decoder:
self.norm_2 = RMSNorm(d_model)
self.film_2 = FiLM(d_cond, d_model)
self.cross_attn = MultiHeadRelativeAttention(
n_heads,
d_model,
dropout,
bidirectional=True,
has_relative_attention_bias=False,
)
# Create last feed-forward layer
self.norm_3 = RMSNorm(d_model)
self.film_3 = FiLM(d_cond, d_model)
self.feed_forward = FeedForward(d_model=d_model, dropout=dropout)
# Create dropout
self.dropout = nn.Dropout(dropout)
def forward(
self,
x,
x_mask,
cond,
src=None,
src_mask=None,
position_bias=None,
encoder_decoder_position_bias=None,
):
"""Computes one transformer layer consisting of self attention, (op) cross attention
and feedforward layer
Parameters
----------
x : Tensor[B x T_q x D]
x_mask : Tensor[B x T_q]
src : Tensor[B x T_kv x D], optional
src_mask : Tensor[B x T_kv x D], optional
position_bias : Tensor[heads x B x T_q x T_q], optional
Relative position bias for self attention layer
encoder_decoder_position_bias : Tensor[heads x B x T_q x T_kv], optional
Relative position bias for cross attention layer
Returns
-------
Tensor[B x T_q x D]
"""
y = self.norm_1(x)
y = self.film_1(y.permute(0, 2, 1), cond).permute(0, 2, 1)
if self.flash_attn:
with torch.autocast(y.device.type, dtype=torch.bfloat16):
y = self.self_attn(y)[0]
else:
y, position_bias = self.self_attn(y, y, y, x_mask, position_bias)
x = x + self.dropout(y)
if self.is_decoder:
y = self.norm_2(x)
y = self.film_2(y.permute(0, 2, 1), cond).permute(0, 2, 1)
y, encoder_decoder_position_bias = self.cross_attn(
y, src, src, src_mask, encoder_decoder_position_bias
)
x = x + self.dropout(y)
y = self.norm_3(x)
y = self.film_3(
y.permute(
0,
2,
1,
),
cond,
).permute(0, 2, 1)
y = self.feed_forward(y)
x = x + self.dropout(y)
return x, position_bias, encoder_decoder_position_bias
class TransformerStack(nn.Module):
def __init__(
self,
d_model: int = 512,
d_cond: int = 64,
n_heads: int = 8,
n_layers: int = 8,
last_layer: bool = True,
bidirectional: bool = True,
flash_attn: bool = False,
is_decoder: bool = False,
dropout: float = 0.1,
):
super().__init__()
# Store args
self.bidirectional = bidirectional
self.is_decoder = is_decoder
# Create transformer layers
# In T5, relative attention bias is shared by all layers in the stack
self.layers = nn.ModuleList(
[
TransformerLayer(
d_model,
d_cond,
n_heads,
bidirectional,
is_decoder,
has_relative_attention_bias=True if (i == 0) else False,
flash_attn=flash_attn,
dropout=dropout,
)
for i in range(n_layers)
]
)
# Perform last normalization
self.norm = RMSNorm(d_model) if last_layer else None
def subsequent_mask(self, size):
return torch.ones(1, size, size).tril().bool()
def forward(self, x, x_mask, cond=None, src=None, src_mask=None,
return_activations: bool = False
):
"""Computes a full transformer stack
Parameters
----------
x : Tensor[B x T_q x D]
x_mask : Tensor[B x T_q]
src : Tensor[B x T_kv x D], optional
src_mask : Tensor[B x T_kv], optional
Returns
-------
Tensor[B x T_q x D]
"""
# Convert `src_mask` to (B x T_q x T_kv) shape for cross attention masking
if self.is_decoder:
src_mask = x_mask.unsqueeze(-1) * src_mask.unsqueeze(-2)
# Convert `x_mask` to (B x T_q x T_q) shape for self attention masking
x_mask = x_mask.unsqueeze(-2)
if not self.bidirectional:
x_mask = x_mask * self.subsequent_mask(x.size(1)).to(x_mask.device)
# Initialize position biases
position_bias = None
encoder_decoder_position_bias = None
# Compute transformer layers
if return_activations:
activations = []
for layer in self.layers:
x, position_bias, encoder_decoder_position_bias = layer(
x=x,
x_mask=x_mask,
cond=cond,
src=src,
src_mask=src_mask,
position_bias=position_bias,
encoder_decoder_position_bias=encoder_decoder_position_bias,
)
if return_activations:
activations.append(x.detach())
out = self.norm(x) if self.norm is not None else x
if return_activations:
return out, torch.stack(activations)
else:
return out
class VampNet(at.ml.BaseModel):
def __init__(
self,
n_heads: int = 20,
n_layers: int = 16,
r_cond_dim: int = 0,
n_codebooks: int = 9,
n_conditioning_codebooks: int = 0,
latent_dim: int = 8,
embedding_dim: int = 1280,
vocab_size: int = 1024,
flash_attn: bool = True,
noise_mode: str = "mask",
dropout: float = 0.1
):
super().__init__()
assert r_cond_dim == 0, f"r_cond_dim must be 0 (not supported), but got {r_cond_dim}"
self.n_heads = n_heads
self.n_layers = n_layers
self.r_cond_dim = r_cond_dim
self.n_codebooks = n_codebooks
self.n_conditioning_codebooks = n_conditioning_codebooks
self.embedding_dim = embedding_dim
self.vocab_size = vocab_size
self.latent_dim = latent_dim
self.flash_attn = flash_attn
self.noise_mode = noise_mode
assert self.noise_mode == "mask", "deprecated"
self.embedding = CodebookEmbedding(
latent_dim=latent_dim,
n_codebooks=n_codebooks,
vocab_size=vocab_size,
emb_dim=embedding_dim,
special_tokens=["MASK"],
)
self.mask_token = self.embedding.special_idxs["MASK"]
self.transformer = TransformerStack(
d_model=embedding_dim,
d_cond=r_cond_dim,
n_heads=n_heads,
n_layers=n_layers,
last_layer=True,
bidirectional=True,
flash_attn=flash_attn,
is_decoder=False,
dropout=dropout,
)
# Add final conv layer
self.n_predict_codebooks = n_codebooks - n_conditioning_codebooks
self.classifier = SequentialWithFiLM(
WNConv1d(
embedding_dim,
vocab_size * self.n_predict_codebooks,
kernel_size=1,
padding="same",
# groups=self.n_predict_codebooks,
),
)
def forward(self, x, return_activations: bool = False):
x = self.embedding(x)
x_mask = torch.ones_like(x, dtype=torch.bool)[:, :1, :].squeeze(1)
x = rearrange(x, "b d n -> b n d")
out = self.transformer(x=x, x_mask=x_mask, return_activations=return_activations)
if return_activations:
out, activations = out
out = rearrange(out, "b n d -> b d n")
out = self.classifier(out, None) # no cond here!
out = rearrange(out, "b (p c) t -> b p (t c)", c=self.n_predict_codebooks)
if return_activations:
return out, activations
else:
return out
def r_embed(self, r, max_positions=10000):
if self.r_cond_dim > 0:
dtype = r.dtype
r = _gamma(r) * max_positions
half_dim = self.r_cond_dim // 2
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
emb = r[:, None] * emb[None, :]
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
if self.r_cond_dim % 2 == 1: # zero pad
emb = nn.functional.pad(emb, (0, 1), mode="constant")
return emb.to(dtype)
else:
return r
@torch.no_grad()
def decode(self, z, codec):
"""
convert a sequence of latents to a signal.
"""
assert z.ndim == 3
# remove mask token
z = z.masked_fill(z == self.mask_token, 0)
signal = at.AudioSignal(
codec.decode(
codec.quantizer.from_latents(self.embedding.from_codes(z, codec))[0]
)["audio"],
codec.sample_rate,
)
# find where the mask token is and replace it with silence in the audio
for tstep in range(z.shape[-1]):
if torch.all(z[:, :, tstep] == self.mask_token):
sample_idx_0 = tstep * codec.hop_length
sample_idx_1 = sample_idx_0 + codec.hop_length
signal.samples[:, :, sample_idx_0:sample_idx_1] = 0.0
return signal
@torch.inference_mode()
def generate(
self,
codec,
time_steps: int = 300,
_sampling_steps: List[int] = [12],
start_tokens: Optional[torch.Tensor] = None,
temperature: float = 1.0,
mask: Optional[torch.Tensor] = None,
mask_temperature: float = 10.5,
typical_filtering=True,
typical_mass=0.2,
typical_min_tokens=64,
top_p=None,
seed: int = None,
sample_cutoff: float = 1.0,
return_signal=True,
debug=False,
causal_weight: float = 0.0,
cfg_guidance: float = None,
):
if seed is not None:
at.util.seed(seed)
sampling_steps = sum(_sampling_steps)
logging.debug(f"beginning generation with {sampling_steps} steps")
#####################
# resolve initial z #
#####################
z = start_tokens
nb = z.shape[0]
if z is None:
z = torch.full((1, self.n_codebooks, time_steps), self.mask_token).to(
self.device
)
#################
# resolve mask #
#################
if mask is None:
mask = torch.ones_like(z).to(self.device).int()
mask[:, : self.n_conditioning_codebooks, :] = 0.0
if mask.ndim == 2:
mask = mask[:, None, :].repeat(1, z.shape[1], 1)
# init_mask = mask.clone()
###########
# set up #
##########
# apply the mask to z
z_masked = z.masked_fill(mask.bool(), self.mask_token)
# logging.debug(f"z_masked: {z_masked}")
# how many mask tokens to begin with?
num_mask_tokens_at_start = (z_masked == self.mask_token).sum()
# how many codebooks are we inferring vs conditioning on?
n_infer_codebooks = self.n_codebooks - self.n_conditioning_codebooks
if cfg_guidance is not None:
# we need to repeat our tensors
z_uncond = torch.full_like(z, self.mask_token)
z_masked = torch.cat(
(z_masked, z_uncond), dim=0
)
z = torch.cat(
(z, z_uncond), dim=0
)
mask = torch.cat(
(mask, torch.full_like(mask, 1)), dim=0
)
#################
# begin sampling #
#################
from tqdm import tqdm
for i in range(sampling_steps):
# our current schedule step
r = scalar_to_batch_tensor(
(i + 1) / sampling_steps,
z.shape[0]
).to(z.device)
# get latents
latents = self.embedding.from_codes(z_masked, codec)
# infer from latents
# NOTE: this collapses the codebook dimension into the sequence dimension
logits = self.forward(latents) # b, prob, seq
if cfg_guidance is not None:
logits_cond, logits_uncond = logits[:nb], logits[nb:]
logits_cond = cfg_guidance * logits_cond + cfg_guidance * (1 - logits_uncond)
logits = logits.permute(0, 2, 1) # b, seq, prob
b = logits.shape[0]
sampled_z, selected_probs = sample_from_logits(
logits, sample=(
(i / sampling_steps) <= sample_cutoff
),
temperature=temperature,
typical_filtering=typical_filtering, typical_mass=typical_mass,
typical_min_tokens=typical_min_tokens,
top_k=None, top_p=top_p, return_probs=True,
)
# flatten z_masked and mask, so we can deal with the sampling logic
# we'll unflatten them at the end of the loop for the next forward pass
# remove conditioning codebooks, we'll add them back at the end
z_masked = codebook_flatten(z_masked[:, self.n_conditioning_codebooks:, :])
mask = (z_masked == self.mask_token).int()
# update the mask, remove conditioning codebooks from the mask
# add z back into sampled z where the mask was false
sampled_z = torch.where(
mask.bool(), sampled_z, z_masked
)
# ignore any tokens that weren't masked
selected_probs = torch.where(
mask.bool(), selected_probs, torch.inf
)
# get the num tokens to mask, according to the schedule
num_to_mask = torch.floor(_gamma(r) * num_mask_tokens_at_start).unsqueeze(1).long()
logging.debug(f"num to mask: {num_to_mask}")
if i != (sampling_steps - 1):
num_to_mask = torch.maximum(
torch.tensor(1),
torch.minimum(
mask.sum(dim=-1, keepdim=True) - 1,
num_to_mask
)
)
# get our new mask
mask = mask_by_random_topk(
num_to_mask, selected_probs, mask_temperature * (1-r)
)
# update the mask
z_masked = torch.where(
mask.bool(), self.mask_token, sampled_z
)
z_masked = codebook_unflatten(z_masked, n_infer_codebooks)
mask = codebook_unflatten(mask, n_infer_codebooks)
# add conditioning codebooks back to z_masked
z_masked = torch.cat(
(z[:, :self.n_conditioning_codebooks, :], z_masked), dim=1
)
# add conditioning codebooks back to sampled_z
sampled_z = codebook_unflatten(sampled_z, n_infer_codebooks)
sampled_z = torch.cat(
(z[:, :self.n_conditioning_codebooks, :], sampled_z), dim=1
)
if cfg_guidance is not None:
sampled_z = sampled_z[:nb]
if return_signal:
return self.decode(sampled_z, codec)
else:
return sampled_z
def sample_from_logits(
logits,
sample: bool = True,
temperature: float = 1.0,
top_k: int = None,
top_p: float = None,
typical_filtering: bool = False,
typical_mass: float = 0.2,
typical_min_tokens: int = 1,
return_probs: bool = False
):
"""Convenience function to sample from a categorial distribution with input as
unnormalized logits.
Parameters
----------
logits : Tensor[..., vocab_size]
config: SamplingConfig
The set of hyperparameters to be used for sampling
sample : bool, optional
Whether to perform multinomial sampling, by default True
temperature : float, optional
Scaling parameter when multinomial samping, by default 1.0
top_k : int, optional
Restricts sampling to only `top_k` values acc. to probability,
by default None
top_p : float, optional
Restricts sampling to only those values with cumulative
probability = `top_p`, by default None
Returns
-------
Tensor[...]
Sampled tokens
"""
shp = logits.shape[:-1]
if typical_filtering:
typical_filter(logits,
typical_mass=typical_mass,
typical_min_tokens=typical_min_tokens
)
# Apply top_k sampling
if top_k is not None:
v, _ = logits.topk(top_k)
logits[logits < v[..., [-1]]] = -float("inf")
# Apply top_p (nucleus) sampling
if top_p is not None and top_p < 1.0:
v, sorted_indices = logits.sort(descending=True)
cumulative_probs = v.softmax(dim=-1).cumsum(dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
# Right shift indices_to_remove to keep 1st token over threshold
sorted_indices_to_remove = F.pad(sorted_indices_to_remove, (1, 0), value=False)[
..., :-1
]
# Compute indices_to_remove in unsorted array
indices_to_remove = sorted_indices_to_remove.scatter(
-1, sorted_indices, sorted_indices_to_remove
)
logits[indices_to_remove] = -float("inf")
# Perform multinomial sampling after normalizing logits
probs = (
F.softmax(logits / temperature, dim=-1)
if temperature > 0
else logits.softmax(dim=-1)
)
token = (
probs.view(-1, probs.size(-1)).multinomial(1).squeeze(1).view(*shp)
if sample
else logits.argmax(-1)
)
if return_probs:
token_probs = probs.take_along_dim(token.unsqueeze(-1), dim=-1).squeeze(-1)
return token, token_probs
else:
return token
def mask_by_random_topk(
num_to_mask: int,
probs: torch.Tensor,
temperature: float = 1.0,
):
"""
Args:
num_to_mask (int): number of tokens to mask
probs (torch.Tensor): probabilities for each sampled event, shape (batch, seq)
temperature (float, optional): temperature. Defaults to 1.0.
"""
logging.debug(f"masking by random topk")
logging.debug(f"num to mask: {num_to_mask}")
logging.debug(f"probs shape: {probs.shape}")
logging.debug(f"temperature: {temperature}")
logging.debug("")
noise = gumbel_noise_like(probs)
temperature = temperature.unsqueeze(-1)
confidence = torch.log(probs) + temperature * noise
logging.debug(f"confidence shape: {confidence.shape}")
sorted_confidence, sorted_idx = confidence.sort(dim=-1)
logging.debug(f"sorted confidence shape: {sorted_confidence.shape}")
logging.debug(f"sorted idx shape: {sorted_idx.shape}")
# get the cut off threshold, given the mask length
cut_off = torch.take_along_dim(
sorted_confidence, num_to_mask, axis=-1
)
logging.debug(f"cut off shape: {cut_off.shape}")
# mask out the tokens
mask = confidence < cut_off
logging.debug(f"mask shape: {mask.shape}")
return mask
def typical_filter(
logits,
typical_mass: float = 0.95,
typical_min_tokens: int = 1,):
nb, nt, _ = logits.shape
x_flat = rearrange(logits, "b t l -> (b t ) l")
x_flat_norm = torch.nn.functional.log_softmax(x_flat, dim=-1)
x_flat_norm_p = torch.exp(x_flat_norm)
entropy = -(x_flat_norm * x_flat_norm_p).nansum(-1, keepdim=True)
c_flat_shifted = torch.abs((-x_flat_norm) - entropy)
c_flat_sorted, x_flat_indices = torch.sort(c_flat_shifted, descending=False)
x_flat_cumsum = (
x_flat.gather(-1, x_flat_indices).softmax(dim=-1).cumsum(dim=-1)
)
last_ind = (x_flat_cumsum < typical_mass).sum(dim=-1)
sorted_indices_to_remove = c_flat_sorted > c_flat_sorted.gather(
1, last_ind.view(-1, 1)
)
if typical_min_tokens > 1:
sorted_indices_to_remove[..., :typical_min_tokens] = 0
indices_to_remove = sorted_indices_to_remove.scatter(
1, x_flat_indices, sorted_indices_to_remove
)
x_flat = x_flat.masked_fill(indices_to_remove, -float("Inf"))
logits = rearrange(x_flat, "(b t) l -> b t l", t=nt)
return logits
if __name__ == "__main__":
# import argbind
from .layers import num_params
VampNet = argbind.bind(VampNet)
@argbind.bind(without_prefix=True)
def try_model(device: str = "cuda", batch_size: int = 2, seq_len_s: float = 10.0):
seq_len = int(32000 / 512 * seq_len_s)
model = VampNet().to(device)
z = torch.randint(
0, model.vocab_size, size=(batch_size, model.n_codebooks, seq_len)
).to(device)
r = torch.zeros(batch_size).to(device)
z_mask_latent = torch.rand(
batch_size, model.latent_dim * model.n_codebooks, seq_len
).to(device)
z_hat = model(z_mask_latent)
pred = z_hat.argmax(dim=1)
pred = model.embedding.unflatten(pred, n_codebooks=model.n_predict_codebooks)
logging.debug(f"model has {num_params(model)/1e6:<.3f}M parameters")
logging.debug(f"prediction has shape {pred.shape}")
args = argbind.parse_args()
with argbind.scope(args):
try_model()