File size: 20,669 Bytes
41b9d24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d43c6
41b9d24
 
 
 
05d43c6
 
 
 
 
41b9d24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08c78c6
41b9d24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import os
from pathlib import Path
import math
import logging

import torch
import numpy as np
from audiotools import AudioSignal
import tqdm

from .modules.transformer import VampNet
from .beats import WaveBeat
from .mask import *

# from dac.model.dac import DAC
from lac.model.lac import LAC as DAC


def signal_concat(
    audio_signals: list,
):
    audio_data = torch.cat([x.audio_data for x in audio_signals], dim=-1)

    return AudioSignal(audio_data, sample_rate=audio_signals[0].sample_rate)


def _load_model(
    ckpt: str, 
    lora_ckpt: str = None,
    device: str = "cpu",
    chunk_size_s: int = 10,
):
    # we need to set strict to False if the model has lora weights to add later
    model = VampNet.load(location=Path(ckpt), map_location="cpu", strict=False)

    # load lora weights if needed
    if lora_ckpt is not None:
        if not Path(lora_ckpt).exists():
            should_cont = input(
                f"lora checkpoint {lora_ckpt} does not exist. continue? (y/n) "
            )
            if should_cont != "y":
                raise Exception("aborting")
        else:
            model.load_state_dict(torch.load(lora_ckpt, map_location="cpu"), strict=False)

    model.to(device)
    model.eval()
    model.chunk_size_s = chunk_size_s
    return model



class Interface(torch.nn.Module):
    def __init__(
        self,
        coarse_ckpt: str = None,
        coarse_lora_ckpt: str = None,
        coarse2fine_ckpt: str = None,
        coarse2fine_lora_ckpt: str = None,
        codec_ckpt: str = None,
        wavebeat_ckpt: str = None,
        device: str = "cpu",
        coarse_chunk_size_s: int =  10, 
        coarse2fine_chunk_size_s: int =  3,
        compile=True,
    ):
        super().__init__()
        assert codec_ckpt is not None, "must provide a codec checkpoint"
        self.codec = DAC.load(Path(codec_ckpt))
        self.codec.eval()
        self.codec.to(device)
        self.codec_path = Path(codec_ckpt)

        assert coarse_ckpt is not None, "must provide a coarse checkpoint"
        self.coarse = _load_model(
            ckpt=coarse_ckpt,
            lora_ckpt=coarse_lora_ckpt,
            device=device,
            chunk_size_s=coarse_chunk_size_s,
        )
        self.coarse_path = Path(coarse_ckpt)

        # check if we have a coarse2fine ckpt
        if coarse2fine_ckpt is not None:
            self.c2f_path = Path(coarse2fine_ckpt)
            self.c2f = _load_model(
                ckpt=coarse2fine_ckpt,
                lora_ckpt=coarse2fine_lora_ckpt,
                device=device,
                chunk_size_s=coarse2fine_chunk_size_s,
            )
        else:
            self.c2f_path = None
            self.c2f = None

        if wavebeat_ckpt is not None:
            logging.debug(f"loading wavebeat from {wavebeat_ckpt}")
            self.beat_tracker = WaveBeat(wavebeat_ckpt)
            self.beat_tracker.model.to(device)
        else:
            self.beat_tracker = None

        self.device = device
        self.loudness = -24.0

        if compile:
            logging.debug(f"compiling models")
            self.coarse = torch.compile(self.coarse)
            if self.c2f is not None:
                self.c2f = torch.compile(self.c2f)
            self.codec = torch.compile(self.codec)


    @classmethod
    def default(cls):
        from . import download_codec, download_default
        print(f"loading default vampnet")
        codec_path = download_codec()
        coarse_path, c2f_path = download_default()
    
        return Interface(
            coarse_ckpt=coarse_path,
            coarse2fine_ckpt=c2f_path,
            codec_ckpt=codec_path,
        )

    @classmethod
    def available_models(cls):
        from . import list_finetuned
        return list_finetuned() + ["default"]


    def load_finetuned(self, name: str):
        assert name in self.available_models(), f"{name} is not a valid model name"
        from . import download_finetuned, download_default
        if name == "default":
            coarse_path, c2f_path = download_default()
        else:
            coarse_path, c2f_path = download_finetuned(name)
        self.reload(
            coarse_ckpt=coarse_path,
            c2f_ckpt=c2f_path,
        )

    def reload(
        self, 
        coarse_ckpt: str = None,
        c2f_ckpt: str = None,
    ):
        if coarse_ckpt is not None:
            # check if we already loaded, if so, don't reload
            if self.coarse_path == Path(coarse_ckpt):
                logging.debug(f"already loaded {coarse_ckpt}")
            else:
                self.coarse = _load_model(
                    ckpt=coarse_ckpt,  
                    device=self.device,
                    chunk_size_s=self.coarse.chunk_size_s,
                )
                self.coarse_path = Path(coarse_ckpt)
                logging.debug(f"loaded {coarse_ckpt}")

        if c2f_ckpt is not None:
            if self.c2f_path == Path(c2f_ckpt):
                logging.debug(f"already loaded {c2f_ckpt}")
            else:
                self.c2f = _load_model(
                    ckpt=c2f_ckpt,
                    device=self.device,
                    chunk_size_s=self.c2f.chunk_size_s,
                )
                self.c2f_path = Path(c2f_ckpt)
                logging.debug(f"loaded {c2f_ckpt}")
        
    def s2t(self, seconds: float):
        """seconds to tokens"""
        if isinstance(seconds, np.ndarray):
            return np.ceil(seconds * self.codec.sample_rate / self.codec.hop_length)
        else:
            return math.ceil(seconds * self.codec.sample_rate / self.codec.hop_length)

    def s2t2s(self, seconds: float):
        """seconds to tokens to seconds"""
        return self.t2s(self.s2t(seconds))
    
    def t2s(self, tokens: int):
        """tokens to seconds"""
        return tokens * self.codec.hop_length / self.codec.sample_rate

    def to(self, device):
        self.device = device
        self.coarse.to(device)
        self.codec.to(device)

        if self.c2f is not None:
            self.c2f.to(device)

        if self.beat_tracker is not None:
            self.beat_tracker.model.to(device)
        return self

    def decode(self, z: torch.Tensor):
        return self.coarse.decode(z, self.codec)
    
    def _preprocess(self, signal: AudioSignal):
        signal = (
            signal.clone()
            .resample(self.codec.sample_rate)
            .to_mono()
            .normalize(self.loudness)
            .ensure_max_of_audio(1.0)
        )
        logging.debug(f"length before codec preproc: {signal.samples.shape}")
        signal.samples, length = self.codec.preprocess(signal.samples, signal.sample_rate)
        logging.debug(f"length after codec preproc: {signal.samples.shape}")
        return signal
    
    @torch.inference_mode()
    def encode(self, signal: AudioSignal):
        signal = signal.to(self.device)
        signal = self._preprocess(signal)
        z = self.codec.encode(signal.samples, signal.sample_rate)["codes"]
        return z

    def snap_to_beats(
        self, 
        signal: AudioSignal
    ):
        assert hasattr(self, "beat_tracker"), "No beat tracker loaded"
        beats, downbeats = self.beat_tracker.extract_beats(signal)
        
        # trim the signa around the first beat time
        samples_begin = int(beats[0] * signal.sample_rate )
        samples_end = int(beats[-1] * signal.sample_rate)
        logging.debug(beats[0])
        signal = signal.clone().trim(samples_begin, signal.length - samples_end)

        return signal

    def make_beat_mask(self, 
            signal: AudioSignal, 
            before_beat_s: float = 0.0,
            after_beat_s: float = 0.02,
            mask_downbeats: bool = True,
            mask_upbeats: bool = True,
            downbeat_downsample_factor: int = None,
            beat_downsample_factor: int = None,
            dropout: float = 0.0,
            invert: bool = True,
    ):
        """make a beat synced mask. that is, make a mask that 
        places 1s at and around the beat, and 0s everywhere else. 
        """
        assert self.beat_tracker is not None, "No beat tracker loaded"

        # get the beat times
        beats, downbeats = self.beat_tracker.extract_beats(signal)

        # get the beat indices in z
        beats_z, downbeats_z = self.s2t(beats), self.s2t(downbeats)

        # remove downbeats from beats
        beats_z = torch.tensor(beats_z)[~torch.isin(torch.tensor(beats_z), torch.tensor(downbeats_z))]
        beats_z = beats_z.tolist()
        downbeats_z = downbeats_z.tolist()

        # make the mask 
        seq_len = self.s2t(signal.duration)
        mask = torch.zeros(seq_len, device=self.device)
        
        mask_b4 = self.s2t(before_beat_s)
        mask_after = self.s2t(after_beat_s)

        if beat_downsample_factor is not None:
            if beat_downsample_factor < 1:
                raise ValueError("mask_beat_downsample_factor must be >= 1 or None")
        else:
            beat_downsample_factor = 1

        if downbeat_downsample_factor is not None:
            if downbeat_downsample_factor < 1:
                raise ValueError("mask_beat_downsample_factor must be >= 1 or None")
        else:
            downbeat_downsample_factor = 1

        beats_z = beats_z[::beat_downsample_factor]
        downbeats_z = downbeats_z[::downbeat_downsample_factor]
        logging.debug(f"beats_z: {len(beats_z)}")
        logging.debug(f"downbeats_z: {len(downbeats_z)}")
    
        if mask_upbeats:
            for beat_idx in beats_z:
                _slice = int(beat_idx - mask_b4), int(beat_idx + mask_after)
                num_steps = mask[_slice[0]:_slice[1]].shape[0]
                _m = torch.ones(num_steps, device=self.device)
                _m_mask = torch.bernoulli(_m * (1 - dropout))
                _m = _m * _m_mask.long()
                
                mask[_slice[0]:_slice[1]] = _m

        if mask_downbeats:
            for downbeat_idx in downbeats_z:
                _slice = int(downbeat_idx - mask_b4), int(downbeat_idx + mask_after)
                num_steps = mask[_slice[0]:_slice[1]].shape[0]
                _m = torch.ones(num_steps, device=self.device)
                _m_mask = torch.bernoulli(_m * (1 - dropout))
                _m = _m * _m_mask.long()
                
                mask[_slice[0]:_slice[1]] = _m
        
        mask = mask.clamp(0, 1)
        if invert:
            mask = 1 - mask
        
        mask = mask[None, None, :].bool().long()
        if self.c2f is not None:
            mask = mask.repeat(1, self.c2f.n_codebooks, 1)
        else:
            mask = mask.repeat(1, self.coarse.n_codebooks, 1)
        return mask
    
    def set_chunk_size(self, chunk_size_s: float):
        self.coarse.chunk_size_s = chunk_size_s
        
    @torch.inference_mode()
    def coarse_to_fine(
        self, 
        z: torch.Tensor,
        mask: torch.Tensor = None,
        return_mask: bool = False,
        **kwargs
    ):
        assert self.c2f is not None, "No coarse2fine model loaded"
        length = z.shape[-1]
        chunk_len = self.s2t(self.c2f.chunk_size_s)
        n_chunks = math.ceil(z.shape[-1] / chunk_len)

        # zero pad to chunk_len
        if length % chunk_len != 0:
            pad_len = chunk_len - (length % chunk_len)
            z = torch.nn.functional.pad(z, (0, pad_len))
            mask = torch.nn.functional.pad(mask, (0, pad_len), value=1) if mask is not None else None

        n_codebooks_to_append = self.c2f.n_codebooks - z.shape[1]
        if n_codebooks_to_append > 0:
            z = torch.cat([
                z,
                torch.zeros(z.shape[0], n_codebooks_to_append, z.shape[-1]).long().to(self.device)
            ], dim=1)
            logging.debug(f"appended {n_codebooks_to_append} codebooks to z")

        # set the mask to 0 for all conditioning codebooks
        if mask is not None:
            mask = mask.clone()
            mask[:, :self.c2f.n_conditioning_codebooks, :] = 0

        fine_z = []
        for i in range(n_chunks):
            chunk = z[:, :, i * chunk_len : (i + 1) * chunk_len]
            mask_chunk = mask[:, :, i * chunk_len : (i + 1) * chunk_len] if mask is not None else None
            
            with torch.autocast("cuda", dtype=torch.bfloat16):
                chunk = self.c2f.generate(
                    codec=self.codec,
                    time_steps=chunk_len,
                    start_tokens=chunk,
                    return_signal=False,
                    mask=mask_chunk,
                    cfg_guidance=None,
                    **kwargs
                )
                fine_z.append(chunk)

        fine_z = torch.cat(fine_z, dim=-1)
        if return_mask:
            return fine_z[:, :, :length].clone(), apply_mask(fine_z, mask, self.c2f.mask_token)[0][:, :, :length].clone()
        
        return fine_z[:, :, :length].clone()
    
    @torch.inference_mode()
    def coarse_vamp(
        self, 
        z, 
        mask,
        return_mask=False,
        gen_fn=None,
        **kwargs
    ):
        # coarse z
        cz = z[:, : self.coarse.n_codebooks, :].clone()
        mask = mask[:, : self.coarse.n_codebooks, :]
        # assert cz.shape[-1] <= self.s2t(self.coarse.chunk_size_s), f"the sequence of tokens provided must match the one specified in the coarse chunk size, but got {cz.shape[-1]} and {self.s2t(self.coarse.chunk_size_s)}"

        # cut into chunks, keep the last chunk separate if it's too small
        chunk_len = self.s2t(self.coarse.chunk_size_s)
        n_chunks = math.ceil(cz.shape[-1] / chunk_len)
        last_chunk_len = cz.shape[-1] % chunk_len

        cz_chunks = []
        mask_chunks = []
        for i in range(n_chunks):
            chunk = cz[:, :, i * chunk_len : (i + 1) * chunk_len]
            mask_chunk = mask[:, :, i * chunk_len : (i + 1) * chunk_len]

            # make sure that the very first and last timestep of each chunk is 0 so that we don't get a weird
            # discontinuity when we stitch the chunks back together
            # only if there's already a 0 somewhere in the chunk
            if torch.any(mask_chunk == 0):
                mask_chunk[:, :, 0] = 0
                mask_chunk[:, :, -1] = 0

            cz_chunks.append(chunk)
            mask_chunks.append(mask_chunk)

        # now vamp each chunk
        cz_masked_chunks = []
        cz_vamped_chunks = []
        for chunk, mask_chunk in zip(cz_chunks, mask_chunks):
            cz_masked_chunk, mask_chunk = apply_mask(chunk, mask_chunk, self.coarse.mask_token)
            cz_masked_chunk = cz_masked_chunk[:, : self.coarse.n_codebooks, :]
            cz_masked_chunks.append(cz_masked_chunk)
            

            gen_fn = gen_fn or self.coarse.generate
            with torch.autocast("cuda", dtype=torch.bfloat16):
                c_vamp_chunk = gen_fn(
                    codec=self.codec,
                    time_steps=chunk_len,
                    start_tokens=cz_masked_chunk,
                    return_signal=False,
                    mask=mask_chunk,
                    **kwargs
                )
                cz_vamped_chunks.append(c_vamp_chunk)
        
        # stitch the chunks back together
        cz_masked = torch.cat(cz_masked_chunks, dim=-1)
        c_vamp = torch.cat(cz_vamped_chunks, dim=-1)

        # add the fine codes back in
        c_vamp = torch.cat(
            [c_vamp, z[:, self.coarse.n_codebooks :, :]], 
            dim=1
        )

        if return_mask:
            return c_vamp, cz_masked
        
        return c_vamp
    
    def build_mask(self, 
        z: torch.Tensor,
        sig: AudioSignal = None,
        rand_mask_intensity: float = 1.0,
        prefix_s: float = 0.0,
        suffix_s: float = 0.0,
        periodic_prompt: int = 7,
        periodic_prompt_width: int = 1,
        onset_mask_width: int = 0, 
        _dropout: float = 0.0,
        upper_codebook_mask: int = 3,
        ncc: int = 0,
    ):
        mask = linear_random(z, rand_mask_intensity)
        mask = mask_and(
            mask,
            inpaint(z, self.s2t(prefix_s), self.s2t(suffix_s)),
        )

        pmask = periodic_mask(z, periodic_prompt, periodic_prompt_width, random_roll=True)
        mask = mask_and(mask, pmask)

        if onset_mask_width > 0:
            assert sig is not None, f"must provide a signal to use onset mask"
            mask = mask_and(
                mask, onset_mask(
                    sig, z, self, 
                    width=onset_mask_width
                )
            )

        mask = dropout(mask, _dropout)
        mask = codebook_unmask(mask, ncc)

        mask = codebook_mask(mask, int(upper_codebook_mask), None)
        return mask

    def vamp(
        self, 
        codes: torch.Tensor,
        mask: torch.Tensor,
        batch_size: int = 1,
        feedback_steps: int = 1,
        time_stretch_factor: int = 1,
        return_mask: bool = False,
        **kwargs,
    ):
        z = codes

        # expand z to batch size
        z = z.expand(batch_size, -1, -1)
        mask = mask.expand(batch_size, -1, -1)

        # stretch mask and z to match the time stretch factor
        # we'll add (stretch_factor - 1) mask tokens in between each timestep of z
        # and we'll make the mask 1 in all the new slots we added
        if time_stretch_factor > 1:
            z = z.repeat_interleave(time_stretch_factor, dim=-1)
            mask = mask.repeat_interleave(time_stretch_factor, dim=-1)
            added_mask = torch.ones_like(mask)
            added_mask[:, :, ::time_stretch_factor] = 0
            mask = mask.bool() | added_mask.bool()
            mask = mask.long()
            
        # the forward pass
        logging.debug(z.shape)
        logging.debug("coarse!")
        zv, mask_z = self.coarse_vamp(
            z,
            mask=mask,
            return_mask=True, 
            **kwargs
        )

        # add the top codebooks back in
        if zv.shape[1] < z.shape[1]:
            logging.debug(f"adding {z.shape[1] - zv.shape[1]} codebooks back in")
            zv = torch.cat(
                [zv, z[:, self.coarse.n_codebooks :, :]], 
                dim=1
            )

        # now, coarse2fine
        logging.debug(f"coarse2fine!")
        zv, fine_zv_mask = self.coarse_to_fine(
            zv, 
            mask=mask,
            typical_filtering=True,
            _sampling_steps=2,
            return_mask=True
        )
        mask_z = torch.cat(
            [mask_z[:, :self.coarse.n_codebooks, :], fine_zv_mask[:, self.coarse.n_codebooks:, :]], 
            dim=1
        )

        z = zv

        if return_mask:
            return z, mask_z.cpu(),
        else:
            return z

    def visualize_codes(self, z: torch.Tensor):
        import matplotlib.pyplot as plt
        # make sure the figsize is square when imshow is called
        fig = plt.figure(figsize=(10, 7))
        # in subplots, plot z[0] and the mask
        # set title to "codes" and "mask"
        fig.add_subplot(2, 1, 1)
        plt.imshow(z[0].cpu().numpy(), aspect='auto', origin='lower', cmap="tab20")
        plt.title("codes")
        plt.ylabel("codebook index")
        # set the xticks to seconds


if __name__ == "__main__":
    import audiotools as at
    import logging
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    torch.set_logging.debugoptions(threshold=10000)
    at.util.seed(42)

    interface = Interface(
        coarse_ckpt="./models/vampnet/coarse.pth", 
        coarse2fine_ckpt="./models/vampnet/c2f.pth", 
        codec_ckpt="./models/vampnet/codec.pth",
        device="cuda", 
        wavebeat_ckpt="./models/wavebeat.pth"
    )


    sig = at.AudioSignal('assets/example.wav')

    z = interface.encode(sig)


    mask = interface.build_mask(
        z=z,
        sig=sig,
        rand_mask_intensity=1.0,
        prefix_s=0.0,
        suffix_s=0.0,
        periodic_prompt=7,
        periodic_prompt2=7,
        periodic_prompt_width=1,
        onset_mask_width=5, 
        _dropout=0.0,
        upper_codebook_mask=3,
        upper_codebook_mask_2=None,
        ncc=0,
    )

    zv, mask_z = interface.coarse_vamp(
        z, 
        mask=mask,
        return_mask=True, 
        gen_fn=interface.coarse.generate
    )
    

    use_coarse2fine = True
    if use_coarse2fine: 
        zv = interface.coarse_to_fine(zv, mask=mask)
        breakpoint()

    mask = interface.decode(mask_z).cpu()

    sig = interface.decode(zv).cpu()


    logging.debug("done")