Spaces:
Runtime error
Runtime error
import gradio as gr | |
from torchvision.transforms import Compose, Resize, ToTensor, Normalize | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch | |
from pathlib import Path | |
from re import TEMPLATE | |
from typing import Optional, Union | |
import os | |
from huggingface_hub import PyTorchModelHubMixin, HfApi, HfFolder, Repository | |
TEMPLATE_MODEL_CARD_PATH = "dummy" | |
class HugGANModelHubMixin(PyTorchModelHubMixin): | |
"""A mixin to push PyTorch Models to the Hugging Face Hub. This | |
mixin was adapted from the PyTorchModelHubMixin to also push a template | |
README.md for the HugGAN sprint. | |
""" | |
def push_to_hub( | |
self, | |
repo_path_or_name: Optional[str] = None, | |
repo_url: Optional[str] = None, | |
commit_message: Optional[str] = "Add model", | |
organization: Optional[str] = None, | |
private: Optional[bool] = None, | |
api_endpoint: Optional[str] = None, | |
use_auth_token: Optional[Union[bool, str]] = None, | |
git_user: Optional[str] = None, | |
git_email: Optional[str] = None, | |
config: Optional[dict] = None, | |
skip_lfs_files: bool = False, | |
default_model_card: Optional[str] = TEMPLATE_MODEL_CARD_PATH | |
) -> str: | |
""" | |
Upload model checkpoint or tokenizer files to the Hub while | |
synchronizing a local clone of the repo in `repo_path_or_name`. | |
Parameters: | |
repo_path_or_name (`str`, *optional*): | |
Can either be a repository name for your model or tokenizer in | |
the Hub or a path to a local folder (in which case the | |
repository will have the name of that local folder). If not | |
specified, will default to the name given by `repo_url` and a | |
local directory with that name will be created. | |
repo_url (`str`, *optional*): | |
Specify this in case you want to push to an existing repository | |
in the hub. If unspecified, a new repository will be created in | |
your namespace (unless you specify an `organization`) with | |
`repo_name`. | |
commit_message (`str`, *optional*): | |
Message to commit while pushing. Will default to `"add config"`, | |
`"add tokenizer"` or `"add model"` depending on the type of the | |
class. | |
organization (`str`, *optional*): | |
Organization in which you want to push your model or tokenizer | |
(you must be a member of this organization). | |
private (`bool`, *optional*): | |
Whether the repository created should be private. | |
api_endpoint (`str`, *optional*): | |
The API endpoint to use when pushing the model to the hub. | |
use_auth_token (`bool` or `str`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. | |
If `True`, will use the token generated when running | |
`transformers-cli login` (stored in `~/.huggingface`). Will | |
default to `True` if `repo_url` is not specified. | |
git_user (`str`, *optional*): | |
will override the `git config user.name` for committing and | |
pushing files to the hub. | |
git_email (`str`, *optional*): | |
will override the `git config user.email` for committing and | |
pushing files to the hub. | |
config (`dict`, *optional*): | |
Configuration object to be saved alongside the model weights. | |
default_model_card (`str`, *optional*): | |
Path to a markdown file to use as your default model card. | |
Returns: | |
The url of the commit of your model in the given repository. | |
""" | |
if repo_path_or_name is None and repo_url is None: | |
raise ValueError( | |
"You need to specify a `repo_path_or_name` or a `repo_url`." | |
) | |
if use_auth_token is None and repo_url is None: | |
token = HfFolder.get_token() | |
if token is None: | |
raise ValueError( | |
"You must login to the Hugging Face hub on this computer by typing `huggingface-cli login` and " | |
"entering your credentials to use `use_auth_token=True`. Alternatively, you can pass your own " | |
"token as the `use_auth_token` argument." | |
) | |
elif isinstance(use_auth_token, str): | |
token = use_auth_token | |
else: | |
token = None | |
if repo_path_or_name is None: | |
repo_path_or_name = repo_url.split("/")[-1] | |
# If no URL is passed and there's no path to a directory containing files, create a repo | |
if repo_url is None and not os.path.exists(repo_path_or_name): | |
repo_id = Path(repo_path_or_name).name | |
if organization: | |
repo_id = f"{organization}/{repo_id}" | |
repo_url = HfApi(endpoint=api_endpoint).create_repo( | |
repo_id=repo_id, | |
token=token, | |
private=private, | |
repo_type=None, | |
exist_ok=True, | |
) | |
repo = Repository( | |
repo_path_or_name, | |
clone_from=repo_url, | |
use_auth_token=use_auth_token, | |
git_user=git_user, | |
git_email=git_email, | |
skip_lfs_files=skip_lfs_files | |
) | |
repo.git_pull(rebase=True) | |
# Save the files in the cloned repo | |
self.save_pretrained(repo_path_or_name, config=config) | |
model_card_path = Path(repo_path_or_name) / 'README.md' | |
if not model_card_path.exists(): | |
model_card_path.write_text(TEMPLATE_MODEL_CARD_PATH.read_text()) | |
# Commit and push! | |
repo.git_add() | |
repo.git_commit(commit_message) | |
return repo.git_push() | |
def weights_init_normal(m): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
torch.nn.init.normal_(m.weight.data, 0.0, 0.02) | |
elif classname.find("BatchNorm2d") != -1: | |
torch.nn.init.normal_(m.weight.data, 1.0, 0.02) | |
torch.nn.init.constant_(m.bias.data, 0.0) | |
############################## | |
# U-NET | |
############################## | |
class UNetDown(nn.Module): | |
def __init__(self, in_size, out_size, normalize=True, dropout=0.0): | |
super(UNetDown, self).__init__() | |
layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)] | |
if normalize: | |
layers.append(nn.InstanceNorm2d(out_size)) | |
layers.append(nn.LeakyReLU(0.2)) | |
if dropout: | |
layers.append(nn.Dropout(dropout)) | |
self.model = nn.Sequential(*layers) | |
def forward(self, x): | |
return self.model(x) | |
class UNetUp(nn.Module): | |
def __init__(self, in_size, out_size, dropout=0.0): | |
super(UNetUp, self).__init__() | |
layers = [ | |
nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False), | |
nn.InstanceNorm2d(out_size), | |
nn.ReLU(inplace=True), | |
] | |
if dropout: | |
layers.append(nn.Dropout(dropout)) | |
self.model = nn.Sequential(*layers) | |
def forward(self, x, skip_input): | |
x = self.model(x) | |
x = torch.cat((x, skip_input), 1) | |
return x | |
class GeneratorUNet(nn.Module, HugGANModelHubMixin): | |
def __init__(self, in_channels=3, out_channels=3): | |
super(GeneratorUNet, self).__init__() | |
self.down1 = UNetDown(in_channels, 64, normalize=False) | |
self.down2 = UNetDown(64, 128) | |
self.down3 = UNetDown(128, 256) | |
self.down4 = UNetDown(256, 512, dropout=0.5) | |
self.down5 = UNetDown(512, 512, dropout=0.5) | |
self.down6 = UNetDown(512, 512, dropout=0.5) | |
self.down7 = UNetDown(512, 512, dropout=0.5) | |
self.down8 = UNetDown(512, 512, normalize=False, dropout=0.5) | |
self.up1 = UNetUp(512, 512, dropout=0.5) | |
self.up2 = UNetUp(1024, 512, dropout=0.5) | |
self.up3 = UNetUp(1024, 512, dropout=0.5) | |
self.up4 = UNetUp(1024, 512, dropout=0.5) | |
self.up5 = UNetUp(1024, 256) | |
self.up6 = UNetUp(512, 128) | |
self.up7 = UNetUp(256, 64) | |
self.final = nn.Sequential( | |
nn.Upsample(scale_factor=2), | |
nn.ZeroPad2d((1, 0, 1, 0)), | |
nn.Conv2d(128, out_channels, 4, padding=1), | |
nn.Tanh(), | |
) | |
def forward(self, x): | |
# U-Net generator with skip connections from encoder to decoder | |
d1 = self.down1(x) | |
d2 = self.down2(d1) | |
d3 = self.down3(d2) | |
d4 = self.down4(d3) | |
d5 = self.down5(d4) | |
d6 = self.down6(d5) | |
d7 = self.down7(d6) | |
d8 = self.down8(d7) | |
u1 = self.up1(d8, d7) | |
u2 = self.up2(u1, d6) | |
u3 = self.up3(u2, d5) | |
u4 = self.up4(u3, d4) | |
u5 = self.up5(u4, d3) | |
u6 = self.up6(u5, d2) | |
u7 = self.up7(u6, d1) | |
return self.final(u7) | |
def load_image_infer(image_file): | |
# Configure dataloaders | |
transform = Compose([ | |
Resize((args.image_size, args.image_size), Image.BICUBIC), | |
ToTensor(), | |
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
]) | |
image_file = Image.fromarray(np.array(image_file)[:, ::-1, :], "RGB") | |
image_file = transform(image_file) | |
return image_file | |
def generate_images(test_input): | |
test_input = load_image_infer(test_input) | |
prediction = generator(test_input).data | |
fig = plt.figure(figsize=(128, 128)) | |
title = ['Predicted Image'] | |
plt.title('Predicted Image') | |
# Getting the pixel values in the [0, 1] range to plot. | |
plt.imshow(prediction[0,:,:,:] * 0.5 + 0.5) | |
plt.axis('off') | |
return fig | |
generator = GeneratorUNet() | |
generator.from_pretrained("huggan/pix2pix-edge2shoes") | |
img = gr.inputs.Image(shape=(256,256)) | |
plot = gr.outputs.Image(type="plot") | |
description = "Pix2pix model that translates image-to-image." | |
gr.Interface(generate_images, inputs = img, outputs = plot, | |
title = "Pix2Pix Shoes Reconstructor", description = description).launch() |