Spaces:
Runtime error
Runtime error
File size: 10,170 Bytes
560b8c7 6d6a110 7c82ec5 1258ca3 1a122d6 b09c42f 7c82ec5 af30eea 608f555 af30eea 608f555 7c82ec5 608f555 7c82ec5 1258ca3 7c82ec5 b09c42f 7c82ec5 560b8c7 b09c42f 560b8c7 ae0e4e0 b09c42f 7c82ec5 b09c42f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import gradio as gr
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch
from pathlib import Path
from re import TEMPLATE
from typing import Optional, Union
import os
from huggingface_hub import PyTorchModelHubMixin, HfApi, HfFolder, Repository
TEMPLATE_MODEL_CARD_PATH = "dummy"
class HugGANModelHubMixin(PyTorchModelHubMixin):
"""A mixin to push PyTorch Models to the Hugging Face Hub. This
mixin was adapted from the PyTorchModelHubMixin to also push a template
README.md for the HugGAN sprint.
"""
def push_to_hub(
self,
repo_path_or_name: Optional[str] = None,
repo_url: Optional[str] = None,
commit_message: Optional[str] = "Add model",
organization: Optional[str] = None,
private: Optional[bool] = None,
api_endpoint: Optional[str] = None,
use_auth_token: Optional[Union[bool, str]] = None,
git_user: Optional[str] = None,
git_email: Optional[str] = None,
config: Optional[dict] = None,
skip_lfs_files: bool = False,
default_model_card: Optional[str] = TEMPLATE_MODEL_CARD_PATH
) -> str:
"""
Upload model checkpoint or tokenizer files to the Hub while
synchronizing a local clone of the repo in `repo_path_or_name`.
Parameters:
repo_path_or_name (`str`, *optional*):
Can either be a repository name for your model or tokenizer in
the Hub or a path to a local folder (in which case the
repository will have the name of that local folder). If not
specified, will default to the name given by `repo_url` and a
local directory with that name will be created.
repo_url (`str`, *optional*):
Specify this in case you want to push to an existing repository
in the hub. If unspecified, a new repository will be created in
your namespace (unless you specify an `organization`) with
`repo_name`.
commit_message (`str`, *optional*):
Message to commit while pushing. Will default to `"add config"`,
`"add tokenizer"` or `"add model"` depending on the type of the
class.
organization (`str`, *optional*):
Organization in which you want to push your model or tokenizer
(you must be a member of this organization).
private (`bool`, *optional*):
Whether the repository created should be private.
api_endpoint (`str`, *optional*):
The API endpoint to use when pushing the model to the hub.
use_auth_token (`bool` or `str`, *optional*):
The token to use as HTTP bearer authorization for remote files.
If `True`, will use the token generated when running
`transformers-cli login` (stored in `~/.huggingface`). Will
default to `True` if `repo_url` is not specified.
git_user (`str`, *optional*):
will override the `git config user.name` for committing and
pushing files to the hub.
git_email (`str`, *optional*):
will override the `git config user.email` for committing and
pushing files to the hub.
config (`dict`, *optional*):
Configuration object to be saved alongside the model weights.
default_model_card (`str`, *optional*):
Path to a markdown file to use as your default model card.
Returns:
The url of the commit of your model in the given repository.
"""
if repo_path_or_name is None and repo_url is None:
raise ValueError(
"You need to specify a `repo_path_or_name` or a `repo_url`."
)
if use_auth_token is None and repo_url is None:
token = HfFolder.get_token()
if token is None:
raise ValueError(
"You must login to the Hugging Face hub on this computer by typing `huggingface-cli login` and "
"entering your credentials to use `use_auth_token=True`. Alternatively, you can pass your own "
"token as the `use_auth_token` argument."
)
elif isinstance(use_auth_token, str):
token = use_auth_token
else:
token = None
if repo_path_or_name is None:
repo_path_or_name = repo_url.split("/")[-1]
# If no URL is passed and there's no path to a directory containing files, create a repo
if repo_url is None and not os.path.exists(repo_path_or_name):
repo_id = Path(repo_path_or_name).name
if organization:
repo_id = f"{organization}/{repo_id}"
repo_url = HfApi(endpoint=api_endpoint).create_repo(
repo_id=repo_id,
token=token,
private=private,
repo_type=None,
exist_ok=True,
)
repo = Repository(
repo_path_or_name,
clone_from=repo_url,
use_auth_token=use_auth_token,
git_user=git_user,
git_email=git_email,
skip_lfs_files=skip_lfs_files
)
repo.git_pull(rebase=True)
# Save the files in the cloned repo
self.save_pretrained(repo_path_or_name, config=config)
model_card_path = Path(repo_path_or_name) / 'README.md'
if not model_card_path.exists():
model_card_path.write_text(TEMPLATE_MODEL_CARD_PATH.read_text())
# Commit and push!
repo.git_add()
repo.git_commit(commit_message)
return repo.git_push()
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
##############################
# U-NET
##############################
class UNetDown(nn.Module):
def __init__(self, in_size, out_size, normalize=True, dropout=0.0):
super(UNetDown, self).__init__()
layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)]
if normalize:
layers.append(nn.InstanceNorm2d(out_size))
layers.append(nn.LeakyReLU(0.2))
if dropout:
layers.append(nn.Dropout(dropout))
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class UNetUp(nn.Module):
def __init__(self, in_size, out_size, dropout=0.0):
super(UNetUp, self).__init__()
layers = [
nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False),
nn.InstanceNorm2d(out_size),
nn.ReLU(inplace=True),
]
if dropout:
layers.append(nn.Dropout(dropout))
self.model = nn.Sequential(*layers)
def forward(self, x, skip_input):
x = self.model(x)
x = torch.cat((x, skip_input), 1)
return x
class GeneratorUNet(nn.Module, HugGANModelHubMixin):
def __init__(self, in_channels=3, out_channels=3):
super(GeneratorUNet, self).__init__()
self.down1 = UNetDown(in_channels, 64, normalize=False)
self.down2 = UNetDown(64, 128)
self.down3 = UNetDown(128, 256)
self.down4 = UNetDown(256, 512, dropout=0.5)
self.down5 = UNetDown(512, 512, dropout=0.5)
self.down6 = UNetDown(512, 512, dropout=0.5)
self.down7 = UNetDown(512, 512, dropout=0.5)
self.down8 = UNetDown(512, 512, normalize=False, dropout=0.5)
self.up1 = UNetUp(512, 512, dropout=0.5)
self.up2 = UNetUp(1024, 512, dropout=0.5)
self.up3 = UNetUp(1024, 512, dropout=0.5)
self.up4 = UNetUp(1024, 512, dropout=0.5)
self.up5 = UNetUp(1024, 256)
self.up6 = UNetUp(512, 128)
self.up7 = UNetUp(256, 64)
self.final = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.ZeroPad2d((1, 0, 1, 0)),
nn.Conv2d(128, out_channels, 4, padding=1),
nn.Tanh(),
)
def forward(self, x):
# U-Net generator with skip connections from encoder to decoder
d1 = self.down1(x)
d2 = self.down2(d1)
d3 = self.down3(d2)
d4 = self.down4(d3)
d5 = self.down5(d4)
d6 = self.down6(d5)
d7 = self.down7(d6)
d8 = self.down8(d7)
u1 = self.up1(d8, d7)
u2 = self.up2(u1, d6)
u3 = self.up3(u2, d5)
u4 = self.up4(u3, d4)
u5 = self.up5(u4, d3)
u6 = self.up6(u5, d2)
u7 = self.up7(u6, d1)
return self.final(u7)
def load_image_infer(image_file):
# Configure dataloaders
transform = Compose([
Resize((args.image_size, args.image_size), Image.BICUBIC),
ToTensor(),
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
image_file = Image.fromarray(np.array(image_file)[:, ::-1, :], "RGB")
image_file = transform(image_file)
return image_file
def generate_images(test_input):
test_input = load_image_infer(test_input)
prediction = generator(test_input).data
fig = plt.figure(figsize=(128, 128))
title = ['Predicted Image']
plt.title('Predicted Image')
# Getting the pixel values in the [0, 1] range to plot.
plt.imshow(prediction[0,:,:,:] * 0.5 + 0.5)
plt.axis('off')
return fig
generator = GeneratorUNet()
generator.from_pretrained("huggan/pix2pix-edge2shoes")
img = gr.inputs.Image(shape=(256,256))
plot = gr.outputs.Image(type="plot")
description = "Pix2pix model that translates image-to-image."
gr.Interface(generate_images, inputs = img, outputs = plot,
title = "Pix2Pix Shoes Reconstructor", description = description).launch() |