NeonGAN_Demo / app.py
Aanisha's picture
Update app.py
9cbcd63
raw
history blame
4.96 kB
import torch
from torchvision.utils import make_grid
from torchvision import transforms
import torchvision.transforms.functional as TF
from torch import nn, optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader, Dataset
from huggingface_hub import hf_hub_download
import requests
import gradio as gr
import numpy as np
from PIL import Image
class Upsample(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, dropout=True):
super(Upsample, self).__init__()
self.dropout = dropout
self.block = nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, bias=nn.InstanceNorm2d),
nn.InstanceNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.dropout_layer = nn.Dropout2d(0.5)
def forward(self, x, shortcut=None):
x = self.block(x)
if self.dropout:
x = self.dropout_layer(x)
if shortcut is not None:
x = torch.cat([x, shortcut], dim=1)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, apply_instancenorm=True):
super(Downsample, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=nn.InstanceNorm2d)
self.norm = nn.InstanceNorm2d(out_channels)
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.apply_norm = apply_instancenorm
def forward(self, x):
x = self.conv(x)
if self.apply_norm:
x = self.norm(x)
x = self.relu(x)
return x
class CycleGAN_Unet_Generator(nn.Module):
def __init__(self, filter=64):
super(CycleGAN_Unet_Generator, self).__init__()
self.downsamples = nn.ModuleList([
Downsample(3, filter, kernel_size=4, apply_instancenorm=False), # (b, filter, 128, 128)
Downsample(filter, filter * 2), # (b, filter * 2, 64, 64)
Downsample(filter * 2, filter * 4), # (b, filter * 4, 32, 32)
Downsample(filter * 4, filter * 8), # (b, filter * 8, 16, 16)
Downsample(filter * 8, filter * 8), # (b, filter * 8, 8, 8)
Downsample(filter * 8, filter * 8), # (b, filter * 8, 4, 4)
Downsample(filter * 8, filter * 8), # (b, filter * 8, 2, 2)
])
self.upsamples = nn.ModuleList([
Upsample(filter * 8, filter * 8),
Upsample(filter * 16, filter * 8),
Upsample(filter * 16, filter * 8),
Upsample(filter * 16, filter * 4, dropout=False),
Upsample(filter * 8, filter * 2, dropout=False),
Upsample(filter * 4, filter, dropout=False)
])
self.last = nn.Sequential(
nn.ConvTranspose2d(filter * 2, 3, kernel_size=4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
skips = []
for l in self.downsamples:
x = l(x)
skips.append(x)
skips = reversed(skips[:-1])
for l, s in zip(self.upsamples, skips):
x = l(x, s)
out = self.last(x)
return out
class ImageTransform:
def __init__(self, img_size=256):
self.transform = {
'train': transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
]),
'test': transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])}
def __call__(self, img, phase='train'):
img = self.transform[phase](img)
return img
title = "<b>Generate Futuristic Images with NeonGAN</b>"
path = hf_hub_download('huggan/NeonGAN', 'model.bin')
model_gen_n = torch.load(path, map_location=torch.device('cpu'))
transform = ImageTransform(img_size=256)
inputs = [
gr.inputs.Image(type="pil", label="Original Image")
]
outputs = [
gr.outputs.Image(type="pil", label="Neon Image")
]
examples = [['img_1.jpg'],['img_2.jpg']]
def get_output_image(img):
img = transform(img, phase='test')
gen_img = model_gen_n(img.unsqueeze(0))[0]
# Reverse Normalization
gen_img = gen_img * 0.5 + 0.5
gen_img = gen_img * 255
gen_img = gen_img.detach().cpu().numpy().astype(np.uint8)
gen_img = np.transpose(gen_img, [1,2,0])
gen_img = Image.fromarray(gen_img)
print(gen_img)
return gen_img
gr.Interface(
get_output_image,
inputs,
outputs,
examples = examples,
title=title,
theme="huggingface",
).launch(enable_queue=True)