Spaces:
Runtime error
Runtime error
File size: 4,948 Bytes
6b8aec5 299cc73 6ede919 6b8aec5 45455e8 6b8aec5 08cfeba 9cbcd63 2619da8 dbf6a0c 6b8aec5 45455e8 dbf6a0c 45455e8 569b74f 45455e8 dbf6a0c 45455e8 6b8aec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import torch
from torchvision.utils import make_grid
from torchvision import transforms
import torchvision.transforms.functional as TF
from torch import nn, optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader, Dataset
from huggingface_hub import hf_hub_download
import requests
import gradio as gr
import numpy as np
from PIL import Image
class Upsample(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, dropout=True):
super(Upsample, self).__init__()
self.dropout = dropout
self.block = nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, bias=nn.InstanceNorm2d),
nn.InstanceNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.dropout_layer = nn.Dropout2d(0.5)
def forward(self, x, shortcut=None):
x = self.block(x)
if self.dropout:
x = self.dropout_layer(x)
if shortcut is not None:
x = torch.cat([x, shortcut], dim=1)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, apply_instancenorm=True):
super(Downsample, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=nn.InstanceNorm2d)
self.norm = nn.InstanceNorm2d(out_channels)
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.apply_norm = apply_instancenorm
def forward(self, x):
x = self.conv(x)
if self.apply_norm:
x = self.norm(x)
x = self.relu(x)
return x
class CycleGAN_Unet_Generator(nn.Module):
def __init__(self, filter=64):
super(CycleGAN_Unet_Generator, self).__init__()
self.downsamples = nn.ModuleList([
Downsample(3, filter, kernel_size=4, apply_instancenorm=False), # (b, filter, 128, 128)
Downsample(filter, filter * 2), # (b, filter * 2, 64, 64)
Downsample(filter * 2, filter * 4), # (b, filter * 4, 32, 32)
Downsample(filter * 4, filter * 8), # (b, filter * 8, 16, 16)
Downsample(filter * 8, filter * 8), # (b, filter * 8, 8, 8)
Downsample(filter * 8, filter * 8), # (b, filter * 8, 4, 4)
Downsample(filter * 8, filter * 8), # (b, filter * 8, 2, 2)
])
self.upsamples = nn.ModuleList([
Upsample(filter * 8, filter * 8),
Upsample(filter * 16, filter * 8),
Upsample(filter * 16, filter * 8),
Upsample(filter * 16, filter * 4, dropout=False),
Upsample(filter * 8, filter * 2, dropout=False),
Upsample(filter * 4, filter, dropout=False)
])
self.last = nn.Sequential(
nn.ConvTranspose2d(filter * 2, 3, kernel_size=4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
skips = []
for l in self.downsamples:
x = l(x)
skips.append(x)
skips = reversed(skips[:-1])
for l, s in zip(self.upsamples, skips):
x = l(x, s)
out = self.last(x)
return out
class ImageTransform:
def __init__(self, img_size=256):
self.transform = {
'train': transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
]),
'test': transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])}
def __call__(self, img, phase='train'):
img = self.transform[phase](img)
return img
title = "Generate Futuristic Images with NeonGAN"
path = hf_hub_download('huggan/NeonGAN', 'model.bin')
model_gen_n = torch.load(path, map_location=torch.device('cpu'))
transform = ImageTransform(img_size=256)
inputs = [
gr.inputs.Image(type="pil", label="Original Image")
]
outputs = [
gr.outputs.Image(type="pil", label="Neon Image")
]
examples = [['img_1.jpg'],['img_2.jpg']]
def get_output_image(img):
img = transform(img, phase='test')
gen_img = model_gen_n(img.unsqueeze(0))[0]
# Reverse Normalization
gen_img = gen_img * 0.5 + 0.5
gen_img = gen_img * 255
gen_img = gen_img.detach().cpu().numpy().astype(np.uint8)
gen_img = np.transpose(gen_img, [1,2,0])
gen_img = Image.fromarray(gen_img)
print(gen_img)
return gen_img
gr.Interface(
get_output_image,
inputs,
outputs,
examples = examples,
title=title,
theme="huggingface",
).launch(enable_queue=True)
|