File size: 4,948 Bytes
6b8aec5
 
 
 
 
 
 
 
 
 
299cc73
6ede919
6b8aec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45455e8
6b8aec5
 
 
08cfeba
9cbcd63
2619da8
dbf6a0c
6b8aec5
 
 
45455e8
 
 
 
 
 
 
 
 
 
dbf6a0c
 
45455e8
 
 
 
 
 
 
 
 
 
 
 
 
569b74f
45455e8
 
 
 
 
 
 
dbf6a0c
 
45455e8
 
 
 
 
6b8aec5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
from torchvision.utils import make_grid
from torchvision import transforms
import torchvision.transforms.functional as TF
from torch import nn, optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader, Dataset
from huggingface_hub import hf_hub_download
import requests
import gradio as gr
import numpy as np
from PIL import Image

class Upsample(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, dropout=True):
        super(Upsample, self).__init__()
        self.dropout = dropout
        self.block = nn.Sequential(
            nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, bias=nn.InstanceNorm2d),
            nn.InstanceNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )
        self.dropout_layer = nn.Dropout2d(0.5)

    def forward(self, x, shortcut=None):
        x = self.block(x)
        if self.dropout:
            x = self.dropout_layer(x)

        if shortcut is not None:
            x = torch.cat([x, shortcut], dim=1)

        return x


class Downsample(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, apply_instancenorm=True):
        super(Downsample, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=nn.InstanceNorm2d)
        self.norm = nn.InstanceNorm2d(out_channels)
        self.relu = nn.LeakyReLU(0.2, inplace=True)
        self.apply_norm = apply_instancenorm

    def forward(self, x):
        x = self.conv(x)
        if self.apply_norm:
            x = self.norm(x)
        x = self.relu(x)

        return x


class CycleGAN_Unet_Generator(nn.Module):
    def __init__(self, filter=64):
        super(CycleGAN_Unet_Generator, self).__init__()
        self.downsamples = nn.ModuleList([
            Downsample(3, filter, kernel_size=4, apply_instancenorm=False),  # (b, filter, 128, 128)
            Downsample(filter, filter * 2),  # (b, filter * 2, 64, 64)
            Downsample(filter * 2, filter * 4),  # (b, filter * 4, 32, 32)
            Downsample(filter * 4, filter * 8),  # (b, filter * 8, 16, 16)
            Downsample(filter * 8, filter * 8), # (b, filter * 8, 8, 8)
            Downsample(filter * 8, filter * 8), # (b, filter * 8, 4, 4)
            Downsample(filter * 8, filter * 8), # (b, filter * 8, 2, 2)
        ])

        self.upsamples = nn.ModuleList([
            Upsample(filter * 8, filter * 8),
            Upsample(filter * 16, filter * 8),
            Upsample(filter * 16, filter * 8),
            Upsample(filter * 16, filter * 4, dropout=False),
            Upsample(filter * 8, filter * 2, dropout=False),
            Upsample(filter * 4, filter, dropout=False)
        ])

        self.last = nn.Sequential(
            nn.ConvTranspose2d(filter * 2, 3, kernel_size=4, stride=2, padding=1),
            nn.Tanh()
        )

    def forward(self, x):
        skips = []
        for l in self.downsamples:
            x = l(x)
            skips.append(x)

        skips = reversed(skips[:-1])
        for l, s in zip(self.upsamples, skips):
            x = l(x, s)

        out = self.last(x)

        return out
        
class ImageTransform:
   def __init__(self, img_size=256):
       self.transform = {
             'train': transforms.Compose([
                transforms.Resize((img_size, img_size)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.5], std=[0.5])
            ]),
            'test': transforms.Compose([
                transforms.Resize((img_size, img_size)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.5], std=[0.5])
           ])}
   def __call__(self, img, phase='train'):
       img = self.transform[phase](img)
       return img


title = "Generate Futuristic Images with NeonGAN"

path = hf_hub_download('huggan/NeonGAN', 'model.bin')
model_gen_n = torch.load(path, map_location=torch.device('cpu'))

transform = ImageTransform(img_size=256)

inputs = [
    gr.inputs.Image(type="pil", label="Original Image")
]

outputs = [
    gr.outputs.Image(type="pil", label="Neon Image")
]

examples = [['img_1.jpg'],['img_2.jpg']]

def get_output_image(img):

    img = transform(img, phase='test')
    gen_img = model_gen_n(img.unsqueeze(0))[0]

    # Reverse Normalization
    gen_img = gen_img * 0.5 + 0.5
    gen_img = gen_img * 255
    gen_img = gen_img.detach().cpu().numpy().astype(np.uint8)

    gen_img = np.transpose(gen_img, [1,2,0])

    gen_img = Image.fromarray(gen_img)
    print(gen_img)
    
    return gen_img
    
gr.Interface(
    get_output_image,
    inputs,
    outputs,
    examples = examples,
    title=title,
    theme="huggingface",
).launch(enable_queue=True)