Karthikeyan
commited on
Commit
·
e8c317c
1
Parent(s):
077dd97
Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,12 @@ import tempfile
|
|
18 |
import pandas as pd
|
19 |
import re
|
20 |
|
|
|
|
|
|
|
|
|
21 |
class ChemicalIdentifier:
|
|
|
22 |
def __init__(self):
|
23 |
|
24 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
@@ -30,17 +35,19 @@ class ChemicalIdentifier:
|
|
30 |
console_handler.setFormatter(formatter)
|
31 |
self.logger.addHandler(console_handler)
|
32 |
|
|
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
"""
|
36 |
Uploads a file from a given URL and returns the loaded document.
|
37 |
-
|
38 |
Args:
|
39 |
url (str): The URL of the file to be uploaded.
|
40 |
-
|
41 |
Returns:
|
42 |
Document: The loaded document.
|
43 |
-
|
44 |
Raises:
|
45 |
ValueError: If the URL is not valid or the file cannot be fetched.
|
46 |
"""
|
@@ -69,22 +76,19 @@ class ChemicalIdentifier:
|
|
69 |
raise ValueError("Error occurred while uploading the file") from e
|
70 |
|
71 |
|
72 |
-
def
|
73 |
"""
|
74 |
Extracts chemical names from the given text.
|
75 |
-
|
76 |
Args:
|
77 |
text (str): The text to extract chemical names from.
|
78 |
-
|
79 |
Returns:
|
80 |
str: The extracted chemical names in bullet form.
|
81 |
-
|
82 |
Raises:
|
83 |
ValueError: If an error occurs during the extraction process.
|
84 |
"""
|
85 |
|
86 |
try:
|
87 |
-
prompt = f"
|
88 |
response = openai.Completion.create(
|
89 |
model="text-davinci-003",
|
90 |
prompt=prompt,
|
@@ -104,7 +108,7 @@ class ChemicalIdentifier:
|
|
104 |
raise ValueError("Error occurred while finding chemicals") from e
|
105 |
|
106 |
|
107 |
-
def
|
108 |
"""
|
109 |
Retrieves chemicals from the provided URLs.
|
110 |
|
@@ -121,9 +125,9 @@ class ChemicalIdentifier:
|
|
121 |
try:
|
122 |
total_chemical=[]
|
123 |
for url in urls.split(','):
|
124 |
-
webpage_text = self.
|
125 |
-
chemicals = self.
|
126 |
-
total_chemical.append(chemicals)
|
127 |
list_of_chemicals = "".join(total_chemical)
|
128 |
return list_of_chemicals
|
129 |
|
@@ -131,12 +135,6 @@ class ChemicalIdentifier:
|
|
131 |
self.logger.error("Error occurred while getting chemicals from URLs: %s", str(e))
|
132 |
raise ValueError("Error occurred while getting chemicals from URLs") from e
|
133 |
|
134 |
-
def get_empty_state(self):
|
135 |
-
|
136 |
-
""" Create empty Knowledge base"""
|
137 |
-
|
138 |
-
return {"knowledge_base": None}
|
139 |
-
|
140 |
def create_knowledge_base(self,docs):
|
141 |
|
142 |
"""Create a knowledge base from the given documents.
|
@@ -165,44 +163,11 @@ class ChemicalIdentifier:
|
|
165 |
# Return the resulting knowledge base
|
166 |
return knowledge_base
|
167 |
|
|
|
|
|
|
|
168 |
|
169 |
-
def
|
170 |
-
"""Upload a file and create a knowledge base from its contents.
|
171 |
-
Args:
|
172 |
-
file_paths : The files to uploaded.
|
173 |
-
Returns:
|
174 |
-
tuple: A tuple containing the file name and the knowledge base.
|
175 |
-
"""
|
176 |
-
|
177 |
-
file_paths = [single_file_path.name for single_file_path in file_paths]
|
178 |
-
|
179 |
-
loaders = [UnstructuredFileLoader(file_obj, strategy="fast") for file_obj in file_paths]
|
180 |
-
|
181 |
-
# Load the contents of the file using the loader
|
182 |
-
docs = []
|
183 |
-
for loader in loaders:
|
184 |
-
docs.extend(loader.load())
|
185 |
-
|
186 |
-
# Create a knowledge base from the loaded documents using the create_knowledge_base() method
|
187 |
-
knowledge_base = self.create_knowledge_base(docs)
|
188 |
-
|
189 |
-
|
190 |
-
# Return a tuple containing the file name and the knowledge base
|
191 |
-
return file_paths, {"knowledge_base": knowledge_base}
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
def answer_question(self,urls, state):
|
196 |
-
"""Answer a question based on the current knowledge base.
|
197 |
-
Args:
|
198 |
-
state (dict): The current state containing the knowledge base.
|
199 |
-
Returns:
|
200 |
-
str: The answer to the question.
|
201 |
-
"""
|
202 |
-
|
203 |
-
result = self.get_chemicals(urls)
|
204 |
-
# Retrieve the knowledge base from the state dictionary
|
205 |
-
knowledge_base = state["knowledge_base"]
|
206 |
|
207 |
# Set the question for which we want to find the answer
|
208 |
question = "Identify the Chemical Capabilities Only"
|
@@ -229,90 +194,95 @@ class ChemicalIdentifier:
|
|
229 |
# Run the question-answering chain on the input documents and question
|
230 |
response = chain.run(input_documents=docs, question=question)
|
231 |
|
232 |
-
Answer = response+"\n"+result
|
233 |
-
|
234 |
# Return the response as the answer to the question
|
235 |
-
return
|
236 |
-
|
237 |
-
|
238 |
-
def extract_excel_data(self,file_path):
|
239 |
-
# Read the Excel file
|
240 |
-
df = pd.read_excel(file_path)
|
241 |
-
|
242 |
-
# Flatten the data to a single list
|
243 |
-
data_list = []
|
244 |
-
for _, row in df.iterrows():
|
245 |
-
data_list.extend(row.tolist())
|
246 |
-
|
247 |
-
return data_list
|
248 |
-
|
249 |
-
def comparing_chemicals(self,urls,state):
|
250 |
-
chemicals = self.answer_question(urls,state)
|
251 |
-
excel_file_path = "Capability.xlsx"
|
252 |
-
chemistry_capability = self.extract_excel_data(excel_file_path)
|
253 |
-
response = openai.Completion.create(
|
254 |
-
engine="text-davinci-003",
|
255 |
-
prompt= f"""Analyse the following text delimited by triple backticks to return the comman chemicals.
|
256 |
-
text : ```{chemicals} {chemistry_capability}```.
|
257 |
-
result should be in bullet points format.
|
258 |
-
""",
|
259 |
-
max_tokens=300,
|
260 |
-
n=1,
|
261 |
-
stop=None,
|
262 |
-
temperature=0,
|
263 |
-
top_p=1.0,
|
264 |
-
frequency_penalty=0.0,
|
265 |
-
presence_penalty=0.0
|
266 |
-
)
|
267 |
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
-
return result
|
271 |
|
272 |
def gradio_interface(self)->None:
|
273 |
"""
|
274 |
Starts the Gradio interface for chemical identification.
|
275 |
"""
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
with gr.
|
284 |
-
|
285 |
-
|
286 |
-
with gr.
|
287 |
-
with gr.
|
288 |
-
with gr.
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
with gr.
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
upload_button.upload(self.upload_file, upload_button, [file_output,state])
|
307 |
-
|
308 |
-
compare_btn.click(self.comparing_chemicals,[url,state],compared_result)
|
309 |
-
demo.launch()
|
310 |
|
311 |
-
except Exception as e:
|
312 |
-
self.logger.error("Error occurred while launching Gradio interface: %s", str(e))
|
313 |
-
raise ValueError("Error occurred while launching Gradio interface") from e
|
314 |
|
315 |
if __name__ == "__main__":
|
|
|
316 |
logging.basicConfig(level=logging.DEBUG)
|
317 |
chemical_identifier = ChemicalIdentifier()
|
318 |
chemical_identifier.gradio_interface()
|
|
|
18 |
import pandas as pd
|
19 |
import re
|
20 |
|
21 |
+
|
22 |
+
# Create and Declare Global Varibale "result"
|
23 |
+
results = ''
|
24 |
+
|
25 |
class ChemicalIdentifier:
|
26 |
+
|
27 |
def __init__(self):
|
28 |
|
29 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
35 |
console_handler.setFormatter(formatter)
|
36 |
self.logger.addHandler(console_handler)
|
37 |
|
38 |
+
def get_empty_state(self):
|
39 |
|
40 |
+
""" Create empty Knowledge base"""
|
41 |
+
|
42 |
+
return {"knowledge_base": None}
|
43 |
+
|
44 |
+
def get_content_from_url(self,url:str)->List:
|
45 |
"""
|
46 |
Uploads a file from a given URL and returns the loaded document.
|
|
|
47 |
Args:
|
48 |
url (str): The URL of the file to be uploaded.
|
|
|
49 |
Returns:
|
50 |
Document: The loaded document.
|
|
|
51 |
Raises:
|
52 |
ValueError: If the URL is not valid or the file cannot be fetched.
|
53 |
"""
|
|
|
76 |
raise ValueError("Error occurred while uploading the file") from e
|
77 |
|
78 |
|
79 |
+
def extract_chemical_names(self,text:str)->str:
|
80 |
"""
|
81 |
Extracts chemical names from the given text.
|
|
|
82 |
Args:
|
83 |
text (str): The text to extract chemical names from.
|
|
|
84 |
Returns:
|
85 |
str: The extracted chemical names in bullet form.
|
|
|
86 |
Raises:
|
87 |
ValueError: If an error occurs during the extraction process.
|
88 |
"""
|
89 |
|
90 |
try:
|
91 |
+
prompt = f"Identify the Chemical Names Only give text in bullet form {text}. Don't Generate any extra chemicals apart from given text"
|
92 |
response = openai.Completion.create(
|
93 |
model="text-davinci-003",
|
94 |
prompt=prompt,
|
|
|
108 |
raise ValueError("Error occurred while finding chemicals") from e
|
109 |
|
110 |
|
111 |
+
def get_chemicals_for_url(self,urls:str)->str:
|
112 |
"""
|
113 |
Retrieves chemicals from the provided URLs.
|
114 |
|
|
|
125 |
try:
|
126 |
total_chemical=[]
|
127 |
for url in urls.split(','):
|
128 |
+
webpage_text = self.get_content_from_url(url)
|
129 |
+
chemicals = self.extract_chemical_names(webpage_text)
|
130 |
+
total_chemical.append(str(url)+"\n"+chemicals+"\n\n")
|
131 |
list_of_chemicals = "".join(total_chemical)
|
132 |
return list_of_chemicals
|
133 |
|
|
|
135 |
self.logger.error("Error occurred while getting chemicals from URLs: %s", str(e))
|
136 |
raise ValueError("Error occurred while getting chemicals from URLs") from e
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
def create_knowledge_base(self,docs):
|
139 |
|
140 |
"""Create a knowledge base from the given documents.
|
|
|
163 |
# Return the resulting knowledge base
|
164 |
return knowledge_base
|
165 |
|
166 |
+
def file_path_show(self,file_paths):
|
167 |
+
file_paths = [single_file_path.name for single_file_path in file_paths]
|
168 |
+
return file_paths
|
169 |
|
170 |
+
def get_chemicals_for_file(self,state,knowledge_base):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
# Set the question for which we want to find the answer
|
173 |
question = "Identify the Chemical Capabilities Only"
|
|
|
194 |
# Run the question-answering chain on the input documents and question
|
195 |
response = chain.run(input_documents=docs, question=question)
|
196 |
|
|
|
|
|
197 |
# Return the response as the answer to the question
|
198 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
+
def identify_chemicals_in_files(self,file_paths,state):
|
201 |
+
"""Upload a file and create a knowledge base from its contents.
|
202 |
+
Args:
|
203 |
+
file_paths : The files to uploaded.
|
204 |
+
Returns:
|
205 |
+
tuple: A tuple containing the file name and the knowledge base.
|
206 |
+
"""
|
207 |
+
|
208 |
+
|
209 |
+
file_paths = [single_file_path.name for single_file_path in file_paths]
|
210 |
+
|
211 |
+
for file_obj in file_paths:
|
212 |
+
|
213 |
+
loader = UnstructuredFileLoader(file_obj, strategy="fast")
|
214 |
+
|
215 |
+
# Load the contents of the file using the loader
|
216 |
+
docs =loader.load()
|
217 |
+
|
218 |
+
# Create a knowledge base from the loaded documents using the create_knowledge_base() method
|
219 |
+
knowledge_base = self.create_knowledge_base(docs)
|
220 |
+
|
221 |
+
pdf_name = os.path.basename(file_obj)
|
222 |
+
global results
|
223 |
+
final_ans = self.get_chemicals_for_file(state,knowledge_base)
|
224 |
+
results += pdf_name+"\n"+final_ans+"\n\n"
|
225 |
+
|
226 |
+
# Return a tuple containing the file name and the knowledge base
|
227 |
+
return results
|
228 |
+
|
229 |
+
def get_final_result(self,urls,file_paths,state):
|
230 |
+
|
231 |
+
if urls:
|
232 |
+
if file_paths:
|
233 |
+
urls_chemicals = self.get_chemicals_for_url(urls)
|
234 |
+
file_chemicals = self.identify_chemicals_in_files(file_paths,state)
|
235 |
+
chemicals = urls_chemicals + file_chemicals
|
236 |
+
|
237 |
+
return chemicals
|
238 |
+
else:
|
239 |
+
urls_chemicals = self.get_chemicals_for_url(urls)
|
240 |
+
return urls_chemicals
|
241 |
+
elif file_paths:
|
242 |
+
file_chemicals = self.identify_chemicals_in_files(file_paths,state)
|
243 |
+
return file_chemicals
|
244 |
+
else:
|
245 |
+
return "No Files Uploaded"
|
246 |
|
|
|
247 |
|
248 |
def gradio_interface(self)->None:
|
249 |
"""
|
250 |
Starts the Gradio interface for chemical identification.
|
251 |
"""
|
252 |
|
253 |
+
with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-dark1') as demo:
|
254 |
+
gr.HTML("""<center><img src="https://hudsonandhayes.co.uk/wp-content/uploads/2023/01/Group-479.svg" height="110px" width="280px"></center>""")
|
255 |
+
state = gr.State(self.get_empty_state())
|
256 |
+
gr.HTML("""<center><h1 style="color:#fff">Chemical Identifier</h1></center>""")
|
257 |
+
|
258 |
+
with gr.Column(elem_id="col-container"):
|
259 |
+
with gr.Row(elem_id="row-flex"):
|
260 |
+
url = gr.Textbox(label="URL")
|
261 |
+
with gr.Row(elem_id="row-flex"):
|
262 |
+
with gr.Accordion("Upload Files", open = False):
|
263 |
+
with gr.Row():
|
264 |
+
with gr.Column(scale=0.90, min_width=160):
|
265 |
+
file_output = gr.File()
|
266 |
+
with gr.Column(scale=0.10, min_width=160):
|
267 |
+
upload_button = gr.UploadButton(
|
268 |
+
"Browse File", file_types=[".txt", ".pdf", ".doc", ".docx"],
|
269 |
+
file_count = "multiple",variant="primary")
|
270 |
+
with gr.Row():
|
271 |
+
with gr.Column(scale=1, min_width=0):
|
272 |
+
compare_btn = gr.Button(value="Analyse",variant="primary")
|
273 |
+
with gr.Row():
|
274 |
+
with gr.Column(scale=1, min_width=0):
|
275 |
+
compared_result = gr.Textbox(value="",label='Chemicals :',show_label=True, placeholder="",lines=10)
|
276 |
+
|
277 |
+
upload_button.upload(self.file_path_show, upload_button, [file_output])
|
278 |
+
|
279 |
+
compare_btn.click(self.get_final_result,[url,upload_button,state],compared_result)
|
280 |
+
|
281 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
282 |
|
|
|
|
|
|
|
283 |
|
284 |
if __name__ == "__main__":
|
285 |
+
|
286 |
logging.basicConfig(level=logging.DEBUG)
|
287 |
chemical_identifier = ChemicalIdentifier()
|
288 |
chemical_identifier.gradio_interface()
|