robertselvam
commited on
Commit
·
dce8568
1
Parent(s):
46d1b2d
Update app.py
Browse files
app.py
CHANGED
@@ -18,23 +18,7 @@ import tempfile
|
|
18 |
import pandas as pd
|
19 |
import re
|
20 |
|
21 |
-
|
22 |
-
# Create and Declare Global Varibale "result"
|
23 |
-
|
24 |
-
|
25 |
-
class ChemicalIdentifier:
|
26 |
-
|
27 |
-
def __init__(self):
|
28 |
-
|
29 |
-
openai.api_key = os.getenv("OPENAI_API_KEY")
|
30 |
-
self.logger = logging.getLogger("ChemicalIdentifier")
|
31 |
-
self.logger.setLevel(logging.DEBUG)
|
32 |
-
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
33 |
-
console_handler = logging.StreamHandler()
|
34 |
-
console_handler.setLevel(logging.DEBUG)
|
35 |
-
console_handler.setFormatter(formatter)
|
36 |
-
self.logger.addHandler(console_handler)
|
37 |
-
|
38 |
def get_empty_state(self):
|
39 |
|
40 |
""" Create empty Knowledge base"""
|
@@ -52,63 +36,54 @@ class ChemicalIdentifier:
|
|
52 |
ValueError: If the URL is not valid or the file cannot be fetched.
|
53 |
"""
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
raise ValueError("Please enter a valid URL")
|
74 |
-
except Exception as e:
|
75 |
-
self.logger.error("Error occurred while uploading the file: %s", str(e))
|
76 |
-
raise ValueError("Error occurred while uploading the file") from e
|
77 |
|
|
|
78 |
|
79 |
-
|
80 |
-
"""
|
81 |
-
Extracts chemical names from the given text.
|
82 |
Args:
|
83 |
-
|
84 |
Returns:
|
85 |
-
|
86 |
-
Raises:
|
87 |
-
ValueError: If an error occurs during the extraction process.
|
88 |
"""
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
def get_chemicals_for_url(self,urls:str)->str:
|
112 |
"""
|
113 |
Retrieves chemicals from the provided URLs.
|
114 |
|
@@ -122,18 +97,144 @@ class ChemicalIdentifier:
|
|
122 |
ValueError: If an error occurs during the process.
|
123 |
"""
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
def create_knowledge_base(self,docs):
|
139 |
|
@@ -163,35 +264,58 @@ class ChemicalIdentifier:
|
|
163 |
# Return the resulting knowledge base
|
164 |
return knowledge_base
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
def file_path_show(self,file_paths):
|
167 |
-
|
168 |
-
|
169 |
|
170 |
def get_chemicals_for_file(self,state):
|
171 |
-
|
172 |
knowledge_base = state["knowledge_base"]
|
173 |
-
|
174 |
# Set the question for which we want to find the answer
|
175 |
-
question = "
|
176 |
|
177 |
# Perform a similarity search on the knowledge base to retrieve relevant documents
|
178 |
docs = knowledge_base.similarity_search(question)
|
179 |
|
180 |
# Initialize an OpenAI language model for question answering
|
181 |
-
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
182 |
-
|
183 |
-
{context}
|
184 |
-
Question :{question}.
|
185 |
-
The result should be in bullet points format.
|
186 |
-
"""
|
187 |
|
188 |
-
prompt = PromptTemplate(template=template,input_variables=["context","question"])
|
189 |
|
190 |
llm = OpenAI(temperature=0.4)
|
191 |
-
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
192 |
|
193 |
# Load a question-answering chain using the language model
|
194 |
-
chain = load_qa_chain(llm, chain_type="stuff"
|
195 |
|
196 |
# Run the question-answering chain on the input documents and question
|
197 |
response = chain.run(input_documents=docs, question=question)
|
@@ -209,7 +333,7 @@ class ChemicalIdentifier:
|
|
209 |
|
210 |
|
211 |
file_paths = [single_file_path.name for single_file_path in file_paths]
|
212 |
-
|
213 |
for file_obj in file_paths:
|
214 |
|
215 |
loader = UnstructuredFileLoader(file_obj, strategy="fast")
|
@@ -221,24 +345,24 @@ class ChemicalIdentifier:
|
|
221 |
knowledge_base = self.create_knowledge_base(docs)
|
222 |
state = {"knowledge_base": knowledge_base}
|
223 |
pdf_name = os.path.basename(file_obj)
|
|
|
224 |
final_ans = self.get_chemicals_for_file(state)
|
225 |
-
|
226 |
-
|
227 |
# Return a tuple containing the file name and the knowledge base
|
228 |
-
results = "".join(collection_of_results)
|
229 |
return results
|
230 |
|
231 |
-
def get_final_result(self,urls,file_paths,state
|
232 |
-
|
233 |
if urls:
|
234 |
if file_paths:
|
235 |
-
urls_chemicals = self.get_chemicals_for_url(urls)
|
236 |
file_chemicals = self.identify_chemicals_in_files(file_paths,state)
|
237 |
chemicals = urls_chemicals + file_chemicals
|
238 |
|
239 |
return chemicals
|
240 |
else:
|
241 |
-
urls_chemicals = self.get_chemicals_for_url(urls)
|
242 |
return urls_chemicals
|
243 |
elif file_paths:
|
244 |
file_chemicals = self.identify_chemicals_in_files(file_paths,state)
|
@@ -253,10 +377,10 @@ class ChemicalIdentifier:
|
|
253 |
"""
|
254 |
|
255 |
with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-gray') as demo:
|
256 |
-
gr.HTML("""<center
|
257 |
-
<img src="https://hudsonandhayes.co.uk/wp-content/uploads/2023/01/Group-479.svg" height="110px" width="280px"></h1></center>
|
258 |
-
<br><h1 style="color:#fff">Chemical Capability Identifier</h1></center>""")
|
259 |
state = gr.State(self.get_empty_state())
|
|
|
|
|
260 |
with gr.Column(elem_id="col-container"):
|
261 |
with gr.Row(elem_id="row-flex"):
|
262 |
url = gr.Textbox(label="URL")
|
@@ -271,20 +395,30 @@ class ChemicalIdentifier:
|
|
271 |
file_count = "multiple",variant="primary")
|
272 |
with gr.Row():
|
273 |
with gr.Column(scale=1, min_width=0):
|
274 |
-
compare_btn = gr.Button(value="
|
|
|
|
|
|
|
|
|
275 |
with gr.Row():
|
276 |
with gr.Column(scale=1, min_width=0):
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
upload_button.upload(self.file_path_show, upload_button, [file_output])
|
280 |
|
281 |
compare_btn.click(self.get_final_result,[url,upload_button,state],compared_result)
|
282 |
-
|
283 |
-
|
|
|
284 |
|
285 |
|
286 |
if __name__ == "__main__":
|
287 |
|
288 |
-
logging.basicConfig(level=logging.DEBUG)
|
289 |
chemical_identifier = ChemicalIdentifier()
|
290 |
chemical_identifier.gradio_interface()
|
|
|
18 |
import pandas as pd
|
19 |
import re
|
20 |
|
21 |
+
class DocumentQA:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def get_empty_state(self):
|
23 |
|
24 |
""" Create empty Knowledge base"""
|
|
|
36 |
ValueError: If the URL is not valid or the file cannot be fetched.
|
37 |
"""
|
38 |
|
39 |
+
if validators.url(url):
|
40 |
+
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
|
41 |
+
r = requests.get(url,headers=headers)
|
42 |
+
if r.status_code != 200:
|
43 |
+
raise ValueError(
|
44 |
+
"Check the url of your file; returned status code %s" % r.status_code
|
45 |
+
)
|
46 |
+
|
47 |
+
content_type = r.headers.get("content-type")
|
48 |
+
file_extension = mimetypes.guess_extension(content_type)
|
49 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
|
50 |
+
temp_file.write(r.content)
|
51 |
+
file_path = temp_file.name
|
52 |
+
loader = UnstructuredFileLoader(file_path, strategy="fast")
|
53 |
+
docs = loader.load()
|
54 |
+
return docs
|
55 |
+
else:
|
56 |
+
raise ValueError("Please enter a valid URL")
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
def create_knowledge_base(self,docs):
|
59 |
|
60 |
+
"""Create a knowledge base from the given documents.
|
|
|
|
|
61 |
Args:
|
62 |
+
docs (List[str]): List of documents.
|
63 |
Returns:
|
64 |
+
FAISS: Knowledge base built from the documents.
|
|
|
|
|
65 |
"""
|
66 |
|
67 |
+
# Initialize a CharacterTextSplitter to split the documents into chunks
|
68 |
+
# Each chunk has a maximum length of 500 characters
|
69 |
+
# There is no overlap between the chunks
|
70 |
+
text_splitter = CharacterTextSplitter(
|
71 |
+
separator="\n", chunk_size=500, chunk_overlap=100, length_function=len
|
72 |
+
)
|
73 |
+
|
74 |
+
# Split the documents into chunks using the text_splitter
|
75 |
+
chunks = text_splitter.split_documents(docs)
|
76 |
+
|
77 |
+
# Initialize an OpenAIEmbeddings model to compute embeddings of the chunks
|
78 |
+
embeddings = OpenAIEmbeddings()
|
79 |
+
|
80 |
+
# Build a knowledge base using FAISS from the chunks and their embeddings
|
81 |
+
knowledge_base = FAISS.from_documents(chunks, embeddings)
|
82 |
+
|
83 |
+
# Return the resulting knowledge base
|
84 |
+
return knowledge_base
|
85 |
+
|
86 |
+
def get_chemicals_for_url(self,urls:str,state,input_qus)->str:
|
|
|
|
|
87 |
"""
|
88 |
Retrieves chemicals from the provided URLs.
|
89 |
|
|
|
97 |
ValueError: If an error occurs during the process.
|
98 |
"""
|
99 |
|
100 |
+
total_chemical=[]
|
101 |
+
|
102 |
+
for url in urls.split(','):
|
103 |
+
webpage_text = self.get_content_from_url(url)
|
104 |
+
knowledge_base = self.create_knowledge_base(webpage_text)
|
105 |
+
state = {"knowledge_base": knowledge_base}
|
106 |
+
chemicals = self.get_chemicals_for_file(state,input_qus)
|
107 |
+
total_chemical.append(str(url)+"\n"+chemicals+"\n\n")
|
108 |
+
list_of_chemicals = "".join(total_chemical)
|
109 |
+
|
110 |
+
return list_of_chemicals
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
def file_path_show(self,file_paths):
|
115 |
+
file_paths = [single_file_path.name for single_file_path in file_paths]
|
116 |
+
return file_paths
|
117 |
+
|
118 |
+
def get_chemicals_for_file(self,state,question):
|
119 |
+
knowledge_base = state["knowledge_base"]
|
120 |
+
# Set the question for which we want to find the answer
|
121 |
+
# question = "Identify the Chemical Capabilities Only"
|
122 |
+
|
123 |
+
# Perform a similarity search on the knowledge base to retrieve relevant documents
|
124 |
+
docs = knowledge_base.similarity_search(question)
|
125 |
+
|
126 |
+
# Initialize an OpenAI language model for question answering
|
127 |
+
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
128 |
+
Identify the Chemical Capabilities Only.
|
129 |
+
{context}
|
130 |
+
Question :{question}.
|
131 |
+
The result should be in bullet points format.
|
132 |
+
"""
|
133 |
+
|
134 |
+
prompt = PromptTemplate(template=template,input_variables=["context","question"])
|
135 |
+
|
136 |
+
llm = OpenAI(temperature=0.4)
|
137 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
138 |
+
|
139 |
+
# Load a question-answering chain using the language model
|
140 |
+
chain = load_qa_chain(llm, chain_type="stuff",prompt=prompt)
|
141 |
+
|
142 |
+
# Run the question-answering chain on the input documents and question
|
143 |
+
response = chain.run(input_documents=docs, question=question)
|
144 |
+
|
145 |
+
# Return the response as the answer to the question
|
146 |
+
return response
|
147 |
+
|
148 |
+
def identify_chemicals_in_files(self,file_paths,state,question):
|
149 |
+
"""Upload a file and create a knowledge base from its contents.
|
150 |
+
Args:
|
151 |
+
file_paths : The files to uploaded.
|
152 |
+
Returns:
|
153 |
+
tuple: A tuple containing the file name and the knowledge base.
|
154 |
+
"""
|
155 |
+
|
156 |
+
|
157 |
+
file_paths = [single_file_path.name for single_file_path in file_paths]
|
158 |
+
results =''
|
159 |
+
for file_obj in file_paths:
|
160 |
+
|
161 |
+
loader = UnstructuredFileLoader(file_obj, strategy="fast")
|
162 |
+
|
163 |
+
# Load the contents of the file using the loader
|
164 |
+
docs =loader.load()
|
165 |
+
|
166 |
+
# Create a knowledge base from the loaded documents using the create_knowledge_base() method
|
167 |
+
knowledge_base = self.create_knowledge_base(docs)
|
168 |
+
state = {"knowledge_base": knowledge_base}
|
169 |
+
pdf_name = os.path.basename(file_obj)
|
170 |
+
|
171 |
+
final_ans = self.get_chemicals_for_file(state,question)
|
172 |
+
results += pdf_name+"\n"+final_ans+"\n\n"
|
173 |
+
|
174 |
+
# Return a tuple containing the file name and the knowledge base
|
175 |
+
return results
|
176 |
+
|
177 |
+
def get_final_result(self,urls,file_paths,state,input_qus):
|
178 |
+
|
179 |
+
if urls:
|
180 |
+
if file_paths:
|
181 |
+
urls_chemicals = self.get_chemicals_for_url(urls,state,input_qus)
|
182 |
+
file_chemicals = self.identify_chemicals_in_files(file_paths,state,input_qus)
|
183 |
+
chemicals = urls_chemicals + file_chemicals
|
184 |
+
|
185 |
+
return chemicals
|
186 |
+
else:
|
187 |
+
urls_chemicals = self.get_chemicals_for_url(urls,state,input_qus)
|
188 |
+
return urls_chemicals
|
189 |
+
elif file_paths:
|
190 |
+
file_chemicals = self.identify_chemicals_in_files(file_paths,state,input_qus)
|
191 |
+
return file_chemicals
|
192 |
+
else:
|
193 |
+
return "No Files Uploaded"
|
194 |
+
|
195 |
+
document_qa = DocumentQA()
|
196 |
+
class ChemicalIdentifier:
|
197 |
+
|
198 |
+
def __init__(self):
|
199 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
200 |
+
# os.environ['OPENAI_API_KEY'] = openai_api_key
|
201 |
+
|
202 |
+
def get_empty_state(self):
|
203 |
+
|
204 |
+
""" Create empty Knowledge base"""
|
205 |
+
|
206 |
+
return {"knowledge_base": None}
|
207 |
+
|
208 |
+
def get_content_from_url(self,url:str)->List:
|
209 |
+
"""
|
210 |
+
Uploads a file from a given URL and returns the loaded document.
|
211 |
+
Args:
|
212 |
+
url (str): The URL of the file to be uploaded.
|
213 |
+
Returns:
|
214 |
+
Document: The loaded document.
|
215 |
+
Raises:
|
216 |
+
ValueError: If the URL is not valid or the file cannot be fetched.
|
217 |
+
"""
|
218 |
+
|
219 |
|
220 |
+
if validators.url(url):
|
221 |
+
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
|
222 |
+
r = requests.get(url,headers=headers)
|
223 |
+
if r.status_code != 200:
|
224 |
+
raise ValueError(
|
225 |
+
"Check the url of your file; returned status code %s" % r.status_code
|
226 |
+
)
|
227 |
+
|
228 |
+
content_type = r.headers.get("content-type")
|
229 |
+
file_extension = mimetypes.guess_extension(content_type)
|
230 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
|
231 |
+
temp_file.write(r.content)
|
232 |
+
file_path = temp_file.name
|
233 |
+
loader = UnstructuredFileLoader(file_path, strategy="fast")
|
234 |
+
docs = loader.load()
|
235 |
+
return docs
|
236 |
+
else:
|
237 |
+
raise ValueError("Please enter a valid URL")
|
238 |
|
239 |
def create_knowledge_base(self,docs):
|
240 |
|
|
|
264 |
# Return the resulting knowledge base
|
265 |
return knowledge_base
|
266 |
|
267 |
+
|
268 |
+
def get_chemicals_for_url(self,urls:str,state)->str:
|
269 |
+
"""
|
270 |
+
Retrieves chemicals from the provided URLs.
|
271 |
+
|
272 |
+
Args:
|
273 |
+
urls (str): Comma-separated URLs of the files to be processed.
|
274 |
+
|
275 |
+
Returns:
|
276 |
+
str: The extracted chemical names.
|
277 |
+
|
278 |
+
Raises:
|
279 |
+
ValueError: If an error occurs during the process.
|
280 |
+
"""
|
281 |
+
|
282 |
+
total_chemical=[]
|
283 |
+
for url in urls.split(','):
|
284 |
+
webpage_text = self.get_content_from_url(url)
|
285 |
+
knowledge_base = self.create_knowledge_base(webpage_text)
|
286 |
+
state = {"knowledge_base": knowledge_base}
|
287 |
+
chemicals = self.get_chemicals_for_file(state)
|
288 |
+
total_chemical.append(str(url)+"\n"+chemicals+"\n\n")
|
289 |
+
list_of_chemicals = "".join(total_chemical)
|
290 |
+
return list_of_chemicals
|
291 |
+
|
292 |
+
|
293 |
def file_path_show(self,file_paths):
|
294 |
+
file_paths = [single_file_path.name for single_file_path in file_paths]
|
295 |
+
return file_paths
|
296 |
|
297 |
def get_chemicals_for_file(self,state):
|
|
|
298 |
knowledge_base = state["knowledge_base"]
|
|
|
299 |
# Set the question for which we want to find the answer
|
300 |
+
question = "list out chemicals.Result should be in bullet form"
|
301 |
|
302 |
# Perform a similarity search on the knowledge base to retrieve relevant documents
|
303 |
docs = knowledge_base.similarity_search(question)
|
304 |
|
305 |
# Initialize an OpenAI language model for question answering
|
306 |
+
# template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
307 |
+
# list out all the chemical names.
|
308 |
+
# {context}
|
309 |
+
# Question :{question}.
|
310 |
+
# The result should be in bullet points format.
|
311 |
+
# """
|
312 |
|
313 |
+
# prompt = PromptTemplate(template=template,input_variables=["context","question"])
|
314 |
|
315 |
llm = OpenAI(temperature=0.4)
|
|
|
316 |
|
317 |
# Load a question-answering chain using the language model
|
318 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
319 |
|
320 |
# Run the question-answering chain on the input documents and question
|
321 |
response = chain.run(input_documents=docs, question=question)
|
|
|
333 |
|
334 |
|
335 |
file_paths = [single_file_path.name for single_file_path in file_paths]
|
336 |
+
results =''
|
337 |
for file_obj in file_paths:
|
338 |
|
339 |
loader = UnstructuredFileLoader(file_obj, strategy="fast")
|
|
|
345 |
knowledge_base = self.create_knowledge_base(docs)
|
346 |
state = {"knowledge_base": knowledge_base}
|
347 |
pdf_name = os.path.basename(file_obj)
|
348 |
+
|
349 |
final_ans = self.get_chemicals_for_file(state)
|
350 |
+
results += pdf_name+"\n"+final_ans+"\n\n"
|
351 |
+
|
352 |
# Return a tuple containing the file name and the knowledge base
|
|
|
353 |
return results
|
354 |
|
355 |
+
def get_final_result(self,urls,file_paths,state):
|
356 |
+
|
357 |
if urls:
|
358 |
if file_paths:
|
359 |
+
urls_chemicals = self.get_chemicals_for_url(urls,state)
|
360 |
file_chemicals = self.identify_chemicals_in_files(file_paths,state)
|
361 |
chemicals = urls_chemicals + file_chemicals
|
362 |
|
363 |
return chemicals
|
364 |
else:
|
365 |
+
urls_chemicals = self.get_chemicals_for_url(urls,state)
|
366 |
return urls_chemicals
|
367 |
elif file_paths:
|
368 |
file_chemicals = self.identify_chemicals_in_files(file_paths,state)
|
|
|
377 |
"""
|
378 |
|
379 |
with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-gray') as demo:
|
380 |
+
gr.HTML("""<center><img src="https://hudsonandhayes.co.uk/wp-content/uploads/2023/01/Group-479.svg" height="110px" width="280px"></center>""")
|
|
|
|
|
381 |
state = gr.State(self.get_empty_state())
|
382 |
+
gr.HTML("""<center><h1 style="color:#fff">Chemical Identifier</h1></center>""")
|
383 |
+
|
384 |
with gr.Column(elem_id="col-container"):
|
385 |
with gr.Row(elem_id="row-flex"):
|
386 |
url = gr.Textbox(label="URL")
|
|
|
395 |
file_count = "multiple",variant="primary")
|
396 |
with gr.Row():
|
397 |
with gr.Column(scale=1, min_width=0):
|
398 |
+
compare_btn = gr.Button(value="Chemicals",variant="primary")
|
399 |
+
with gr.Row():
|
400 |
+
with gr.Column(scale=1, min_width=0):
|
401 |
+
compared_result = gr.Textbox(value="",label='Chemicals :',show_label=True, placeholder="",lines=10)
|
402 |
+
|
403 |
with gr.Row():
|
404 |
with gr.Column(scale=1, min_width=0):
|
405 |
+
input_qus = gr.Textbox(value="",label='question :',show_label=True, placeholder="")
|
406 |
+
with gr.Row():
|
407 |
+
with gr.Column(scale=1, min_width=0):
|
408 |
+
find_answer = gr.Button(value="Find",label='Find',show_label=True, placeholder="")
|
409 |
+
with gr.Row():
|
410 |
+
with gr.Column(scale=1, min_width=0):
|
411 |
+
output = gr.Textbox(value="",label='output :',show_label=True, placeholder="")
|
412 |
|
413 |
upload_button.upload(self.file_path_show, upload_button, [file_output])
|
414 |
|
415 |
compare_btn.click(self.get_final_result,[url,upload_button,state],compared_result)
|
416 |
+
|
417 |
+
find_answer.click(document_qa.get_final_result,[url,upload_button,state,input_qus],output)
|
418 |
+
demo.launch(debug=True)
|
419 |
|
420 |
|
421 |
if __name__ == "__main__":
|
422 |
|
|
|
423 |
chemical_identifier = ChemicalIdentifier()
|
424 |
chemical_identifier.gradio_interface()
|