Spaces:
No application file
No application file
File size: 8,664 Bytes
ccce890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "fce4ae66-1841-45b4-a0c0-6202287437d4",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/hubsnippet/.local/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.\n",
"None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.\n"
]
}
],
"source": [
"from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan\n",
"#from datasets import load_dataset\n",
"#import torch\n",
"import soundfile as sf\n",
"#from datasets import load_dataset"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2c4a3d90-f2ac-440a-a7ff-011fab098867",
"metadata": {},
"outputs": [
{
"ename": "ImportError",
"evalue": "\nSpeechT5Tokenizer requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the\ninstallation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones\nthat match your environment. Please note that you may need to restart your runtime after installation.\n",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m processor \u001b[38;5;241m=\u001b[39m \u001b[43mSpeechT5Processor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmicrosoft/speecht5_tts\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m model \u001b[38;5;241m=\u001b[39m SpeechT5ForTextToSpeech\u001b[38;5;241m.\u001b[39mfrom_pretrained(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmicrosoft/speecht5_tts\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 3\u001b[0m vocoder \u001b[38;5;241m=\u001b[39m SpeechT5HifiGan\u001b[38;5;241m.\u001b[39mfrom_pretrained(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmicrosoft/speecht5_hifigan\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/transformers/processing_utils.py:465\u001b[0m, in \u001b[0;36mProcessorMixin.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, cache_dir, force_download, local_files_only, token, revision, **kwargs)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m token \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 463\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtoken\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m token\n\u001b[0;32m--> 465\u001b[0m args \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_arguments_from_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 466\u001b[0m processor_dict, kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mget_processor_dict(pretrained_model_name_or_path, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 468\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mfrom_args_and_dict(args, processor_dict, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/transformers/processing_utils.py:511\u001b[0m, in \u001b[0;36mProcessorMixin._get_arguments_from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 508\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 509\u001b[0m attribute_class \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(transformers_module, class_name)\n\u001b[0;32m--> 511\u001b[0m args\u001b[38;5;241m.\u001b[39mappend(\u001b[43mattribute_class\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m(pretrained_model_name_or_path, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs))\n\u001b[1;32m 512\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m args\n",
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/transformers/utils/import_utils.py:1450\u001b[0m, in \u001b[0;36mDummyObject.__getattribute__\u001b[0;34m(cls, key)\u001b[0m\n\u001b[1;32m 1448\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m key\u001b[38;5;241m.\u001b[39mstartswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m key \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_from_config\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 1449\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__getattribute__\u001b[39m(key)\n\u001b[0;32m-> 1450\u001b[0m \u001b[43mrequires_backends\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_backends\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/transformers/utils/import_utils.py:1438\u001b[0m, in \u001b[0;36mrequires_backends\u001b[0;34m(obj, backends)\u001b[0m\n\u001b[1;32m 1436\u001b[0m failed \u001b[38;5;241m=\u001b[39m [msg\u001b[38;5;241m.\u001b[39mformat(name) \u001b[38;5;28;01mfor\u001b[39;00m available, msg \u001b[38;5;129;01min\u001b[39;00m checks \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m available()]\n\u001b[1;32m 1437\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m failed:\n\u001b[0;32m-> 1438\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(failed))\n",
"\u001b[0;31mImportError\u001b[0m: \nSpeechT5Tokenizer requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the\ninstallation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones\nthat match your environment. Please note that you may need to restart your runtime after installation.\n"
]
}
],
"source": [
"processor = SpeechT5Processor.from_pretrained(\"microsoft/speecht5_tts\")\n",
"model = SpeechT5ForTextToSpeech.from_pretrained(\"microsoft/speecht5_tts\")\n",
"vocoder = SpeechT5HifiGan.from_pretrained(\"microsoft/speecht5_hifigan\")\n",
"\n",
"inputs = processor(text=\"Hello, my dog is cute.\", return_tensors=\"pt\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0fd02046-1a29-4989-9031-4b7d1729a336",
"metadata": {},
"outputs": [],
"source": [
"# load xvector containing speaker's voice characteristics from a dataset\n",
"#embeddings_dataset = load_dataset(\"Matthijs/cmu-arctic-xvectors\", split=\"validation\")\n",
"#speaker_embeddings = torch.tensor(embeddings_dataset[7306][\"xvector\"]).unsqueeze(0)\n",
"\n",
"speech = model.generate_speech(inputs[\"input_ids\"], vocoder=vocoder)\n",
"\n",
"sf.write(\"speech.wav\", speech.numpy(), samplerate=16000)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|