wide_analysis_space / data_prep.py
hsuvaskakoty's picture
Upload data_prep.py
8dbd54d verified
import requests
import pandas as pd
from bs4 import BeautifulSoup
def extract_div_contents_from_url(url):
response = requests.get(url)
if response.status_code != 200:
print(f"Error: Received status code {response.status_code} for URL: {url}")
return pd.DataFrame(columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
soup = BeautifulSoup(response.content, 'html.parser')
div_classes = ["mw-heading mw-heading3",'boilerplate afd vfd xfd-closed', 'boilerplate afd vfd xfd-closed archived mw-archivedtalk']
divs = []
for div_class in div_classes:
divs.extend(soup.find_all('div', class_=div_class))
url_fragment = url.split('#')[-1].replace('_', ' ')
data = []
for div in divs:
try:
title = None
text_url = None
# Extract title and text_url
title_tag = div.find('a')
if title_tag:
title_span = div.find('span', {'data-mw-comment-start': True})
if title_span:
title_anchor = title_span.find_next_sibling('a')
if title_anchor:
title = title_anchor.text
text_url = 'https://en.wikipedia.org' + title_anchor['href']
else:
title = title_tag.text
text_url = 'https://en.wikipedia.org' + title_tag['href']
if title == 'talk page' or title is None:
heading_tag = div.find('div', class_='mw-heading mw-heading3')
if heading_tag:
title_tag = heading_tag.find('a')
if title_tag:
title = title_tag.text
text_url = 'https://en.wikipedia.org' + title_tag['href']
if not title:
continue
if title.lower() != url_fragment.lower():
continue
deletion_discussion = div.prettify()
# Extract label
label = ''
verdict_tag = div.find('p')
if verdict_tag:
label_b_tag = verdict_tag.find('b')
if label_b_tag:
label = label_b_tag.text.strip()
# Extract confirmation
confirmation = ''
discussion_tag = div.find('dd')
if discussion_tag:
discussion_tag_i = discussion_tag.find('i')
if discussion_tag_i:
confirmation_b_tag = discussion_tag_i.find('b')
if confirmation_b_tag:
confirmation = confirmation_b_tag.text.strip()
# Split deletion_discussion into discussion and verdict
parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
discussion = parts[0] if len(parts) > 0 else ''
verdict = '<div class="mw-heading mw-heading3">' + parts[1] if len(parts) > 1 else ''
data.append([title, text_url, deletion_discussion, label, confirmation, verdict, discussion])
except Exception as e:
print(f"Error processing div: {e}")
continue
df = pd.DataFrame(data, columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'verdict', 'discussion'])
df = df[['title', 'discussion', 'verdict', 'label']]
print(f"DataFrame created with {len(df)} rows")
return df
def extract_div_contents_from_url_new(url):
response = requests.get(url)
if response.status_code != 200:
print(f"Error: Received status code {response.status_code} for URL: {url}")
return pd.DataFrame(columns=['date', 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
soup = BeautifulSoup(response.content, 'html.parser')
div_classes = ["mw-heading mw-heading3"]
divs = []
for div_class in div_classes:
divs.extend(soup.find_all('div', class_=div_class))
url_fragment = url.split('#')[-1].replace('_', ' ')
log_date = url.split('/')[-1]
data = []
for i, div in enumerate(divs):
try:
title = None
text_url = None
title_tag = div.find('a')
if title_tag:
title_span = div.find('span', {'data-mw-comment-start': True})
if title_span:
title_anchor = title_span.find_next_sibling('a')
if title_anchor:
title = title_anchor.text
text_url = 'https://en.wikipedia.org' + title_anchor['href']
else:
title = title_tag.text
text_url = 'https://en.wikipedia.org' + title_tag['href']
if title == 'talk page' or title is None:
heading_tag = div.find('div', class_='mw-heading mw-heading3')
if heading_tag:
title_tag = heading_tag.find('a')
if title_tag:
title = title_tag.text
text_url = 'https://en.wikipedia.org' + title_tag['href']
if not title:
continue
if title.lower() != url_fragment.lower():
continue
next_div = div.find_next('div', class_='mw-heading mw-heading3')
deletion_discussion = ''
sibling = div.find_next_sibling()
while sibling and sibling != next_div:
deletion_discussion += str(sibling)
sibling = sibling.find_next_sibling()
label = ''
verdict_tag = div.find('p')
if verdict_tag:
label_b_tag = verdict_tag.find('b')
if label_b_tag:
label = label_b_tag.text.strip()
confirmation = ''
discussion_tag = div.find('dd')
if discussion_tag:
discussion_tag_i = discussion_tag.find('i')
if discussion_tag_i:
confirmation_b_tag = discussion_tag_i.find('b')
if confirmation_b_tag:
confirmation = confirmation_b_tag.text.strip()
parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
discussion = parts[0] if len(parts) > 0 else ''
verdict = '<div class="mw-heading mw-heading3">' + parts[1] if len(parts) > 1 else ''
data.append([ title, text_url, deletion_discussion, label, confirmation, verdict, discussion])
except Exception as e:
print(f"Error processing div: {e}")
continue
df = pd.DataFrame(data, columns=[ 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
return df
def extract_post_links_text(discussion_html):
split_point = '<span class="plainlinks">'
if split_point in discussion_html:
parts = discussion_html.split(split_point)
if len(parts) > 1:
return parts[1]
return discussion_html
def process_discussion(df):
df['discussion_cleaned'] = df['verdict'].apply(extract_post_links_text)
return df
def html_to_plaintext(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup.find_all(['p', 'li', 'dd', 'dl']):
tag.insert_before('\n')
tag.insert_after('\n')
for br in soup.find_all('br'):
br.replace_with('\n')
text = soup.get_text(separator=' ', strip=True)
text = '\n'.join([line.strip() for line in text.splitlines() if line.strip() != ''])
return text
def process_html_to_plaintext(df):
df['discussion_cleaned'] = df['discussion_cleaned'].apply(html_to_plaintext)
df = df[['title', 'discussion_cleaned', 'label']]
return df
import pysbd
def split_text_into_sentences(text):
seg = pysbd.Segmenter(language="en", clean=False)
sentences = seg.segment(text)
return ' '.join(sentences[1:])
def process_split_text_into_sentences(df):
df['discussion_cleaned'] = df['discussion_cleaned'].apply(split_text_into_sentences)
return df
def process_data(url):
df = extract_div_contents_from_url(url)
if df.at[0,'discussion'] == '':
df = extract_div_contents_from_url_new(url)
#print(df.head())
df = process_discussion(df)
print(df.at[0,'discussion'])
df = process_html_to_plaintext(df)
df = process_split_text_into_sentences(df)
if not df.empty:
return df.at[0,'title']+ ' : '+df.at[0, 'discussion_cleaned']
else:
return 'Empty DataFrame'