Spaces:
Build error
Build error
File size: 18,144 Bytes
fd5e0f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
from pathlib import Path
import numpy as np
import datetime
import random
import math
import os
import cv2
import re
from typing import List, Tuple, AnyStr, NamedTuple
import json
import hashlib
from PIL import Image
import modules.config
import modules.sdxl_styles
from modules.flags import Performance
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
# Regexp compiled once. Matches entries with the following pattern:
# <lora:some_lora:1>
# <lora:aNotherLora:-1.6>
LORAS_PROMPT_PATTERN = re.compile(r"(<lora:([^:]+):([+-]?(?:\d+(?:\.\d*)?|\.\d+))>)", re.X)
HASH_SHA256_LENGTH = 10
def erode_or_dilate(x, k):
k = int(k)
if k > 0:
return cv2.dilate(x, kernel=np.ones(shape=(3, 3), dtype=np.uint8), iterations=k)
if k < 0:
return cv2.erode(x, kernel=np.ones(shape=(3, 3), dtype=np.uint8), iterations=-k)
return x
def resample_image(im, width, height):
im = Image.fromarray(im)
im = im.resize((int(width), int(height)), resample=LANCZOS)
return np.array(im)
def resize_image(im, width, height, resize_mode=1):
"""
Resizes an image with the specified resize_mode, width, and height.
Args:
resize_mode: The mode to use when resizing the image.
0: Resize the image to the specified width and height.
1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
im: The image to resize.
width: The width to resize the image to.
height: The height to resize the image to.
"""
im = Image.fromarray(im)
def resize(im, w, h):
return im.resize((w, h), resample=LANCZOS)
if resize_mode == 0:
res = resize(im, width, height)
elif resize_mode == 1:
ratio = width / height
src_ratio = im.width / im.height
src_w = width if ratio > src_ratio else im.width * height // im.height
src_h = height if ratio <= src_ratio else im.height * width // im.width
resized = resize(im, src_w, src_h)
res = Image.new("RGB", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
else:
ratio = width / height
src_ratio = im.width / im.height
src_w = width if ratio < src_ratio else im.width * height // im.height
src_h = height if ratio >= src_ratio else im.height * width // im.width
resized = resize(im, src_w, src_h)
res = Image.new("RGB", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
if ratio < src_ratio:
fill_height = height // 2 - src_h // 2
if fill_height > 0:
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h))
elif ratio > src_ratio:
fill_width = width // 2 - src_w // 2
if fill_width > 0:
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0))
return np.array(res)
def get_shape_ceil(h, w):
return math.ceil(((h * w) ** 0.5) / 64.0) * 64.0
def get_image_shape_ceil(im):
H, W = im.shape[:2]
return get_shape_ceil(H, W)
def set_image_shape_ceil(im, shape_ceil):
shape_ceil = float(shape_ceil)
H_origin, W_origin, _ = im.shape
H, W = H_origin, W_origin
for _ in range(256):
current_shape_ceil = get_shape_ceil(H, W)
if abs(current_shape_ceil - shape_ceil) < 0.1:
break
k = shape_ceil / current_shape_ceil
H = int(round(float(H) * k / 64.0) * 64)
W = int(round(float(W) * k / 64.0) * 64)
if H == H_origin and W == W_origin:
return im
return resample_image(im, width=W, height=H)
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def remove_empty_str(items, default=None):
items = [x for x in items if x != ""]
if len(items) == 0 and default is not None:
return [default]
return items
def join_prompts(*args, **kwargs):
prompts = [str(x) for x in args if str(x) != ""]
if len(prompts) == 0:
return ""
if len(prompts) == 1:
return prompts[0]
return ', '.join(prompts)
def generate_temp_filename(folder='./outputs/', extension='png'):
current_time = datetime.datetime.now()
date_string = current_time.strftime("%Y-%m-%d")
time_string = current_time.strftime("%Y-%m-%d_%H-%M-%S")
random_number = random.randint(1000, 9999)
filename = f"{time_string}_{random_number}.{extension}"
result = os.path.join(folder, date_string, filename)
return date_string, os.path.abspath(result), filename
def sha256(filename, use_addnet_hash=False, length=HASH_SHA256_LENGTH):
print(f"Calculating sha256 for {filename}: ", end='')
if use_addnet_hash:
with open(filename, "rb") as file:
sha256_value = addnet_hash_safetensors(file)
else:
sha256_value = calculate_sha256(filename)
print(f"{sha256_value}")
return sha256_value[:length] if length is not None else sha256_value
def addnet_hash_safetensors(b):
"""kohya-ss hash for safetensors from https://github.com/kohya-ss/sd-scripts/blob/main/library/train_util.py"""
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
b.seek(0)
header = b.read(8)
n = int.from_bytes(header, "little")
offset = n + 8
b.seek(offset)
for chunk in iter(lambda: b.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def calculate_sha256(filename) -> str:
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
with open(filename, "rb") as f:
for chunk in iter(lambda: f.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def quote(text):
if ',' not in str(text) and '\n' not in str(text) and ':' not in str(text):
return text
return json.dumps(text, ensure_ascii=False)
def unquote(text):
if len(text) == 0 or text[0] != '"' or text[-1] != '"':
return text
try:
return json.loads(text)
except Exception:
return text
def unwrap_style_text_from_prompt(style_text, prompt):
"""
Checks the prompt to see if the style text is wrapped around it. If so,
returns True plus the prompt text without the style text. Otherwise, returns
False with the original prompt.
Note that the "cleaned" version of the style text is only used for matching
purposes here. It isn't returned; the original style text is not modified.
"""
stripped_prompt = prompt
stripped_style_text = style_text
if "{prompt}" in stripped_style_text:
# Work out whether the prompt is wrapped in the style text. If so, we
# return True and the "inner" prompt text that isn't part of the style.
try:
left, right = stripped_style_text.split("{prompt}", 2)
except ValueError as e:
# If the style text has multple "{prompt}"s, we can't split it into
# two parts. This is an error, but we can't do anything about it.
print(f"Unable to compare style text to prompt:\n{style_text}")
print(f"Error: {e}")
return False, prompt, ''
left_pos = stripped_prompt.find(left)
right_pos = stripped_prompt.find(right)
if 0 <= left_pos < right_pos:
real_prompt = stripped_prompt[left_pos + len(left):right_pos]
prompt = stripped_prompt.replace(left + real_prompt + right, '', 1)
if prompt.startswith(", "):
prompt = prompt[2:]
if prompt.endswith(", "):
prompt = prompt[:-2]
return True, prompt, real_prompt
else:
# Work out whether the given prompt starts with the style text. If so, we
# return True and the prompt text up to where the style text starts.
if stripped_prompt.endswith(stripped_style_text):
prompt = stripped_prompt[: len(stripped_prompt) - len(stripped_style_text)]
if prompt.endswith(", "):
prompt = prompt[:-2]
return True, prompt, prompt
return False, prompt, ''
def extract_original_prompts(style, prompt, negative_prompt):
"""
Takes a style and compares it to the prompt and negative prompt. If the style
matches, returns True plus the prompt and negative prompt with the style text
removed. Otherwise, returns False with the original prompt and negative prompt.
"""
if not style.prompt and not style.negative_prompt:
return False, prompt, negative_prompt
match_positive, extracted_positive, real_prompt = unwrap_style_text_from_prompt(
style.prompt, prompt
)
if not match_positive:
return False, prompt, negative_prompt, ''
match_negative, extracted_negative, _ = unwrap_style_text_from_prompt(
style.negative_prompt, negative_prompt
)
if not match_negative:
return False, prompt, negative_prompt, ''
return True, extracted_positive, extracted_negative, real_prompt
def extract_styles_from_prompt(prompt, negative_prompt):
extracted = []
applicable_styles = []
for style_name, (style_prompt, style_negative_prompt) in modules.sdxl_styles.styles.items():
applicable_styles.append(PromptStyle(name=style_name, prompt=style_prompt, negative_prompt=style_negative_prompt))
real_prompt = ''
while True:
found_style = None
for style in applicable_styles:
is_match, new_prompt, new_neg_prompt, new_real_prompt = extract_original_prompts(
style, prompt, negative_prompt
)
if is_match:
found_style = style
prompt = new_prompt
negative_prompt = new_neg_prompt
if real_prompt == '' and new_real_prompt != '' and new_real_prompt != prompt:
real_prompt = new_real_prompt
break
if not found_style:
break
applicable_styles.remove(found_style)
extracted.append(found_style.name)
# add prompt expansion if not all styles could be resolved
if prompt != '':
if real_prompt != '':
extracted.append(modules.sdxl_styles.fooocus_expansion)
else:
# find real_prompt when only prompt expansion is selected
first_word = prompt.split(', ')[0]
first_word_positions = [i for i in range(len(prompt)) if prompt.startswith(first_word, i)]
if len(first_word_positions) > 1:
real_prompt = prompt[:first_word_positions[-1]]
extracted.append(modules.sdxl_styles.fooocus_expansion)
if real_prompt.endswith(', '):
real_prompt = real_prompt[:-2]
return list(reversed(extracted)), real_prompt, negative_prompt
class PromptStyle(NamedTuple):
name: str
prompt: str
negative_prompt: str
def is_json(data: str) -> bool:
try:
loaded_json = json.loads(data)
assert isinstance(loaded_json, dict)
except (ValueError, AssertionError):
return False
return True
def get_filname_by_stem(lora_name, filenames: List[str]) -> str | None:
for filename in filenames:
path = Path(filename)
if lora_name == path.stem:
return filename
return None
def get_file_from_folder_list(name, folders):
if not isinstance(folders, list):
folders = [folders]
for folder in folders:
filename = os.path.abspath(os.path.realpath(os.path.join(folder, name)))
if os.path.isfile(filename):
return filename
return os.path.abspath(os.path.realpath(os.path.join(folders[0], name)))
def makedirs_with_log(path):
try:
os.makedirs(path, exist_ok=True)
except OSError as error:
print(f'Directory {path} could not be created, reason: {error}')
def get_enabled_loras(loras: list, remove_none=True) -> list:
return [(lora[1], lora[2]) for lora in loras if lora[0] and (lora[1] != 'None' if remove_none else True)]
def parse_lora_references_from_prompt(prompt: str, loras: List[Tuple[AnyStr, float]], loras_limit: int = 5,
skip_file_check=False, prompt_cleanup=True, deduplicate_loras=True,
lora_filenames=None) -> tuple[List[Tuple[AnyStr, float]], str]:
if lora_filenames is None:
lora_filenames = []
found_loras = []
prompt_without_loras = ''
cleaned_prompt = ''
for token in prompt.split(','):
matches = LORAS_PROMPT_PATTERN.findall(token)
if len(matches) == 0:
prompt_without_loras += token + ', '
continue
for match in matches:
lora_name = match[1] + '.safetensors'
if not skip_file_check:
lora_name = get_filname_by_stem(match[1], lora_filenames)
if lora_name is not None:
found_loras.append((lora_name, float(match[2])))
token = token.replace(match[0], '')
prompt_without_loras += token + ', '
if prompt_without_loras != '':
cleaned_prompt = prompt_without_loras[:-2]
if prompt_cleanup:
cleaned_prompt = cleanup_prompt(prompt_without_loras)
new_loras = []
lora_names = [lora[0] for lora in loras]
for found_lora in found_loras:
if deduplicate_loras and (found_lora[0] in lora_names or found_lora in new_loras):
continue
new_loras.append(found_lora)
if len(new_loras) == 0:
return loras, cleaned_prompt
updated_loras = []
for lora in loras + new_loras:
if lora[0] != "None":
updated_loras.append(lora)
return updated_loras[:loras_limit], cleaned_prompt
def remove_performance_lora(filenames: list, performance: Performance | None):
loras_without_performance = filenames.copy()
if performance is None:
return loras_without_performance
performance_lora = performance.lora_filename()
for filename in filenames:
path = Path(filename)
if performance_lora == path.name:
loras_without_performance.remove(filename)
return loras_without_performance
def cleanup_prompt(prompt):
prompt = re.sub(' +', ' ', prompt)
prompt = re.sub(',+', ',', prompt)
cleaned_prompt = ''
for token in prompt.split(','):
token = token.strip()
if token == '':
continue
cleaned_prompt += token + ', '
return cleaned_prompt[:-2]
def apply_wildcards(wildcard_text, rng, i, read_wildcards_in_order) -> str:
for _ in range(modules.config.wildcards_max_bfs_depth):
placeholders = re.findall(r'__([\w-]+)__', wildcard_text)
if len(placeholders) == 0:
return wildcard_text
print(f'[Wildcards] processing: {wildcard_text}')
for placeholder in placeholders:
try:
matches = [x for x in modules.config.wildcard_filenames if os.path.splitext(os.path.basename(x))[0] == placeholder]
words = open(os.path.join(modules.config.path_wildcards, matches[0]), encoding='utf-8').read().splitlines()
words = [x for x in words if x != '']
assert len(words) > 0
if read_wildcards_in_order:
wildcard_text = wildcard_text.replace(f'__{placeholder}__', words[i % len(words)], 1)
else:
wildcard_text = wildcard_text.replace(f'__{placeholder}__', rng.choice(words), 1)
except:
print(f'[Wildcards] Warning: {placeholder}.txt missing or empty. '
f'Using "{placeholder}" as a normal word.')
wildcard_text = wildcard_text.replace(f'__{placeholder}__', placeholder)
print(f'[Wildcards] {wildcard_text}')
print(f'[Wildcards] BFS stack overflow. Current text: {wildcard_text}')
return wildcard_text
def get_image_size_info(image: np.ndarray, aspect_ratios: list) -> str:
try:
image = Image.fromarray(np.uint8(image))
width, height = image.size
ratio = round(width / height, 2)
gcd = math.gcd(width, height)
lcm_ratio = f'{width // gcd}:{height // gcd}'
size_info = f'Image Size: {width} x {height}, Ratio: {ratio}, {lcm_ratio}'
closest_ratio = min(aspect_ratios, key=lambda x: abs(ratio - float(x.split('*')[0]) / float(x.split('*')[1])))
recommended_width, recommended_height = map(int, closest_ratio.split('*'))
recommended_ratio = round(recommended_width / recommended_height, 2)
recommended_gcd = math.gcd(recommended_width, recommended_height)
recommended_lcm_ratio = f'{recommended_width // recommended_gcd}:{recommended_height // recommended_gcd}'
size_info = f'{width} x {height}, {ratio}, {lcm_ratio}'
size_info += f'\n{recommended_width} x {recommended_height}, {recommended_ratio}, {recommended_lcm_ratio}'
return size_info
except Exception as e:
return f'Error reading image: {e}'
|