File size: 2,479 Bytes
fd5e0f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
# Field of View network architecture.

from typing import Optional

import torch
from torch import nn
from torch.nn import functional as F


class FOVNetwork(nn.Module):
    """Field of View estimation network."""

    def __init__(
        self,
        num_features: int,
        fov_encoder: Optional[nn.Module] = None,
    ):
        """Initialize the Field of View estimation block.

        Args:
        ----
            num_features: Number of features used.
            fov_encoder: Optional encoder to bring additional network capacity.

        """
        super().__init__()

        # Create FOV head.
        fov_head0 = [
            nn.Conv2d(
                num_features, num_features // 2, kernel_size=3, stride=2, padding=1
            ),  # 128 x 24 x 24
            nn.ReLU(True),
        ]
        fov_head = [
            nn.Conv2d(
                num_features // 2, num_features // 4, kernel_size=3, stride=2, padding=1
            ),  # 64 x 12 x 12
            nn.ReLU(True),
            nn.Conv2d(
                num_features // 4, num_features // 8, kernel_size=3, stride=2, padding=1
            ),  # 32 x 6 x 6
            nn.ReLU(True),
            nn.Conv2d(num_features // 8, 1, kernel_size=6, stride=1, padding=0),
        ]
        if fov_encoder is not None:
            self.encoder = nn.Sequential(
                fov_encoder, nn.Linear(fov_encoder.embed_dim, num_features // 2)
            )
            self.downsample = nn.Sequential(*fov_head0)
        else:
            fov_head = fov_head0 + fov_head
        self.head = nn.Sequential(*fov_head)

    def forward(self, x: torch.Tensor, lowres_feature: torch.Tensor) -> torch.Tensor:
        """Forward the fov network.

        Args:
        ----
            x (torch.Tensor): Input image.
            lowres_feature (torch.Tensor): Low resolution feature.

        Returns:
        -------
            The field of view tensor.

        """
        if hasattr(self, "encoder"):
            x = F.interpolate(
                x,
                size=None,
                scale_factor=0.25,
                mode="bilinear",
                align_corners=False,
            )
            x = self.encoder(x)[:, 1:].permute(0, 2, 1)
            lowres_feature = self.downsample(lowres_feature)
            x = x.reshape_as(lowres_feature) + lowres_feature
        else:
            x = lowres_feature
        return self.head(x)