Spaces:
Build error
Build error
File size: 12,211 Bytes
fd5e0f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import PIL
import torch
import numpy as np
import gsplat as gs
import torch.nn as nn
from copy import deepcopy
import torch.nn.functional as F
from dataclasses import dataclass
from ops.utils import (
dpt2xyz,
alpha_inpaint_mask,
transform_points,
numpy_normalize,
numpy_quaternion_from_matrix
)
@dataclass
class Frame():
'''
rgb: in shape of H*W*3, in range of 0-1
dpt: in shape of H*W, real depth
inpaint: bool mask in shape of H*W for inpainting
intrinsic: 3*3
extrinsic: array in shape of 4*4
As a class for:
initialize camera
accept rendering result
accept inpainting result
All at 2D-domain
'''
def __init__(self,
H: int = None,
W: int = None,
rgb: np.array = None,
dpt: np.array = None,
sky: np.array = None,
inpaint: np.array = None,
intrinsic: np.array = None,
extrinsic: np.array = None,
# detailed target
ideal_dpt: np.array = None,
ideal_nml: np.array = None,
prompt: str = None) -> None:
self.H = H
self.W = W
self.rgb = rgb
self.dpt = dpt
self.sky = sky
self.prompt = prompt
self.intrinsic = intrinsic
self.extrinsic = extrinsic
self._rgb_rect()
self._extr_rect()
# for inpainting
self.inpaint = inpaint
self.inpaint_wo_edge = inpaint
# for supervision
self.ideal_dpt = ideal_dpt
self.ideal_nml = ideal_nml
def _rgb_rect(self):
if self.rgb is not None:
if isinstance(self.rgb, PIL.PngImagePlugin.PngImageFile):
self.rgb = np.array(self.rgb)
if isinstance(self.rgb, PIL.JpegImagePlugin.JpegImageFile):
self.rgb = np.array(self.rgb)
if np.amax(self.rgb) > 1.1:
self.rgb = self.rgb / 255
def _extr_rect(self):
if self.extrinsic is None: self.extrinsic = np.eye(4)
self.inv_extrinsic = np.linalg.inv(self.extrinsic)
@dataclass
class Gaussian_Frame():
'''
In-frame-frustrum
Gaussians from a single RGBD frame
As a class for:
accept information from initialized/inpainting+geo-estimated frame
saving pixelsplat properties including rgb, xyz, scale, rotation, opacity; note here, we made a modification to xyz;
we first project depth to xyz
then we tune a scale map(initialized to ones) and a shift map(initialized to zeros), they are optimized and add to the original xyz when rendering
'''
# as pixelsplat guassian
rgb: torch.Tensor = None,
scale: torch.Tensor = None,
opacity: torch.Tensor = None,
rotation: torch.Tensor = None,
# gaussian center
dpt: torch.Tensor = None,
xyz: torch.Tensor = None,
# as a frame
H: int = 480,
W: int = 640,
def __init__(self, frame: Frame, device = 'cuda'):
'''after inpainting'''
# de-active functions
self.rgbs_deact = torch.logit
self.scales_deact = torch.log
self.opacity_deact = torch.logit
self.device = device
# for gaussian initialization
self._set_property_from_frame(frame)
def _to_3d(self):
# inv intrinsic
xyz = dpt2xyz(self.dpt,self.intrinsic)
inv_extrinsic = np.linalg.inv(self.extrinsic)
xyz = transform_points(xyz,inv_extrinsic)
return xyz
def _paint_filter(self,paint_mask):
if np.sum(paint_mask)<3:
paint_mask = np.zeros((self.H,self.W))
paint_mask[0:1] = 1
paint_mask = paint_mask>.5
self.rgb = self.rgb[paint_mask]
self.xyz = self.xyz[paint_mask]
self.scale = self.scale[paint_mask]
self.opacity = self.opacity[paint_mask]
self.rotation = self.rotation[paint_mask]
def _to_cuda(self):
self.rgb = torch.from_numpy(self.rgb.astype(np.float32)).to(self.device)
self.xyz = torch.from_numpy(self.xyz.astype(np.float32)).to(self.device)
self.scale = torch.from_numpy(self.scale.astype(np.float32)).to(self.device)
self.opacity = torch.from_numpy(self.opacity.astype(np.float32)).to(self.device)
self.rotation = torch.from_numpy(self.rotation.astype(np.float32)).to(self.device)
def _fine_init_scale_rotations(self):
# from https://arxiv.org/pdf/2406.09394
""" Compute rotation matrices that align z-axis with given normal vectors using matrix operations. """
up_axis = np.array([0,1,0])
nml = self.nml @ self.extrinsic[0:3,0:3]
qz = numpy_normalize(nml)
qx = np.cross(up_axis,qz)
qx = numpy_normalize(qx)
qy = np.cross(qz,qx)
qy = numpy_normalize(qy)
rot = np.concatenate([qx[...,None],qy[...,None],qz[...,None]],axis=-1)
self.rotation = numpy_quaternion_from_matrix(rot)
# scale
safe_nml = deepcopy(self.nml)
safe_nml[safe_nml[:,:,-1]<0.2,-1] = .2
normal_xoz = deepcopy(safe_nml)
normal_yoz = deepcopy(safe_nml)
normal_xoz[...,1] = 0.
normal_yoz[...,0] = 0.
normal_xoz = numpy_normalize(normal_xoz)
normal_yoz = numpy_normalize(normal_yoz)
cos_theta_x = np.abs(normal_xoz[...,2])
cos_theta_y = np.abs(normal_yoz[...,2])
scale_basic = self.dpt / self.intrinsic[0,0] / np.sqrt(2)
scale_x = scale_basic / cos_theta_x
scale_y = scale_basic / cos_theta_y
scale_z = (scale_x + scale_y) / 10.
self.scale = np.concatenate([scale_x[...,None],
scale_y[...,None],
scale_z[...,None]],axis=-1)
def _coarse_init_scale_rotations(self):
# gaussian property -- HW3 scale
self.scale = self.dpt / self.intrinsic[0,0] / np.sqrt(2)
self.scale = self.scale[:,:,None].repeat(3,-1)
# gaussian property -- HW4 rotation
self.rotation = np.zeros((self.H,self.W,4))
self.rotation[:,:,0] = 1.
def _set_property_from_frame(self,frame: Frame):
'''frame here is a complete init/inpainted frame'''
# basic frame-level property
self.H = frame.H
self.W = frame.W
self.dpt = frame.dpt
self.intrinsic = frame.intrinsic
self.extrinsic = frame.extrinsic
# gaussian property -- xyz with train-able pixel-aligned scale and shift
self.xyz = self._to_3d()
# gaussian property -- HW3 rgb
self.rgb = frame.rgb
# gaussian property -- HW4 rotation HW3 scale
self._coarse_init_scale_rotations()
# gaussian property -- HW opacity
self.opacity = np.ones((self.H,self.W,1)) * 0.8
# to cuda
self._paint_filter(frame.inpaint_wo_edge)
self._to_cuda()
# de-activate
self.rgb = self.rgbs_deact(self.rgb)
self.scale = self.scales_deact(self.scale)
self.opacity = self.opacity_deact(self.opacity)
# to torch parameters
self.rgb = nn.Parameter(self.rgb,requires_grad=False)
self.xyz = nn.Parameter(self.xyz,requires_grad=False)
self.scale = nn.Parameter(self.scale,requires_grad=False)
self.opacity = nn.Parameter(self.opacity,requires_grad=False)
self.rotation = nn.Parameter(self.rotation,requires_grad=False)
def _require_grad(self,sign=True):
self.rgb = self.rgb.requires_grad_(sign)
self.xyz = self.xyz.requires_grad_(sign)
self.scale = self.scale.requires_grad_(sign)
self.opacity = self.opacity.requires_grad_(sign)
self.rotation = self.rotation.requires_grad_(sign)
class Gaussian_Scene():
def __init__(self,cfg=None):
# frames initialing the frame
self.frames = []
self.gaussian_frames: list[Gaussian_Frame] = [] # gaussian frame require training at this optimization
# activate fuctions
self.rgbs_act = torch.sigmoid
self.scales_act = torch.exp
self.opacity_act = torch.sigmoid
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# for traj generation
self.traj_type = 'spiral'
if cfg is not None:
self.traj_min_percentage = cfg.scene.traj.near_percentage
self.traj_max_percentage = cfg.scene.traj.far_percentage
self.traj_forward_ratio = cfg.scene.traj.traj_forward_ratio
self.traj_backward_ratio = cfg.scene.traj.traj_backward_ratio
else:
self.traj_min_percentage,self.traj_max_percentage,self.traj_forward_ratio,self.traj_backward_ratio = 5, 50, 0.3, 0.4
# basic operations
def _render_RGBD(self,frame,background_color='black'):
'''
:intinsic: tensor of [fu,fv,cu,cv] 4-dimension
:extinsic: tensor 4*4-dimension
:out: tensor H*W*3-dimension
'''
background = None
if background_color =='white':
background = torch.ones(1,4,device=self.device)*0.1
background[:,-1] = 0. # for depth
# aligned untrainable xyz and unaligned trainable xyz
# others
xyz = torch.cat([gf.xyz.reshape(-1,3) for gf in self.gaussian_frames],dim=0)
rgb = torch.cat([gf.rgb.reshape(-1,3) for gf in self.gaussian_frames],dim=0)
scale = torch.cat([gf.scale.reshape(-1,3) for gf in self.gaussian_frames],dim=0)
opacity = torch.cat([gf.opacity.reshape(-1) for gf in self.gaussian_frames],dim=0)
rotation = torch.cat([gf.rotation.reshape(-1,4) for gf in self.gaussian_frames],dim=0)
# activate
rgb = self.rgbs_act(rgb)
scale = self.scales_act(scale)
rotation = F.normalize(rotation,dim=1)
opacity = self.opacity_act(opacity)
# property
H,W = frame.H, frame.W
intrinsic = torch.from_numpy(frame.intrinsic.astype(np.float32)).to(self.device)
extrinsic = torch.from_numpy(frame.extrinsic.astype(np.float32)).to(self.device)
# render
render_out,render_alpha,_ = gs.rendering.rasterization(means = xyz,
scales = scale,
quats = rotation,
opacities = opacity,
colors = rgb,
Ks = intrinsic[None],
viewmats = extrinsic[None],
width = W,
height = H,
packed = False,
near_plane= 0.01,
render_mode="RGB+ED",
backgrounds=background) # render: 1*H*W*(3+1)
render_out = render_out.squeeze() # result: H*W*(3+1)
render_rgb = render_out[:,:,0:3]
render_dpt = render_out[:,:,-1]
return render_rgb, render_dpt, render_alpha
@torch.no_grad()
def _render_for_inpaint(self,frame):
# first render
render_rgb, render_dpt, render_alpha = self._render_RGBD(frame)
render_msk = alpha_inpaint_mask(render_alpha)
# to numpy
render_rgb = render_rgb.detach().cpu().numpy()
render_dpt = render_dpt.detach().cpu().numpy()
render_alpha = render_alpha.detach().cpu().numpy()
# assign back
frame.rgb = render_rgb
frame.dpt = render_dpt
frame.inpaint = render_msk
return frame
def _add_trainable_frame(self,frame:Frame,require_grad=True):
# for the init frame, we keep all pixels for finetuning
self.frames.append(frame)
gf = Gaussian_Frame(frame, self.device)
gf._require_grad(require_grad)
self.gaussian_frames.append(gf)
|