Spaces:
Runtime error
Runtime error
File size: 2,114 Bytes
9015655 4b4deff 393b5f6 40685e5 db77b63 393b5f6 9015655 db77b63 393b5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
import spaces
import time
model_name = "hosseinhimself/ISANG-v1.0-8B"
base_model_name = "unsloth/Meta-Llama-3.1-8B"
# Load tokenizer globally
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
@spaces.GPU
def load_model():
try:
# Load the base model
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True
)
# Load the PEFT model
model = PeftModel.from_pretrained(base_model, model_name)
print(f"Model loaded successfully. Using device: {model.device}")
return model
except Exception as e:
print(f"Error loading model: {e}")
raise
@spaces.GPU
def generate_text(prompt):
model = load_model()
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=200, num_return_sequences=1, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
gradio_app = gr.Interface(
generate_text,
inputs=gr.Textbox(label="Enter your message", lines=3),
outputs=gr.Textbox(label="Chatbot Response"),
title="ISANG Chatbot",
description=f"""This is a simple chatbot powered by the ISANG model. It is fine-tuned from the {base_model_name} model.
Enter your message and see how the chatbot responds!""",
examples=[
["سلام، چطوری؟"],
["برام یه داستان تعریف کن"],
["بهترین کتابی که خوندی چی بوده؟"],
["توی اوقات فراغتت چی کار میکنی؟"],
["نظرت درباره هوش مصنوعی چیه؟"]
]
)
if __name__ == "__main__":
gradio_app.launch()
|