File size: 2,087 Bytes
37b6839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from typing import Any
import google.generativeai as genai
from google.generativeai.types import HarmCategory, HarmBlockThreshold
from llama_index.core.llms import (
    CustomLLM,
    CompletionResponse,
    CompletionResponseGen,
    LLMMetadata,
)
from llama_index.core.llms.callbacks import llm_completion_callback

class GLLM(CustomLLM):
    def __init__(
        self,
        context_window: int = 32768,
        num_output: int = 4098,
        model_name: str = "gemini-1.5-flash",
        system_instruction: str = None,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        self._context_window = context_window
        self._num_output = num_output
        self._model_name = model_name
        self._model = genai.GenerativeModel(model_name, system_instruction=system_instruction)

    def gai_generate_content(self, prompt: str, temperature:float =0.5) -> str:
        return self._model.generate_content(
            prompt,
            generation_config = genai.GenerationConfig(
                temperature=temperature,
            ),
            safety_settings={
                HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
            }
        ).text

    @property
    def metadata(self) -> LLMMetadata:
        """Get LLM metadata."""
        return LLMMetadata(
            context_window=self._context_window,
            num_output=self._num_output,
            model_name=self._model_name,
        )

    @llm_completion_callback()
    def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
        text = self.gai_generate_content(prompt)
        return CompletionResponse(text=text)

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, **kwargs: Any
    ) -> CompletionResponseGen:
        text = self.gai_generate_content(prompt)
        response = ""
        for token in text:
            response += token
            yield CompletionResponse(text=response, delta=token)