Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import asyncio | |
from angle_emb import AnglE, Prompts | |
from angle_emb.utils import cosine_similarity | |
angle = AnglE.from_pretrained( | |
"hon9kon9ize/bert-large-cantonese-sts", pooling_strategy='cls') | |
df = None | |
def get_embedding(text): | |
response = angle.encode(text, to_numpy=True) | |
return response[0] | |
def get_dataframe(): | |
global df | |
if df is not None: | |
return df | |
df = pd.read_json("emb.json") | |
df = df.drop_duplicates(subset=["artist_name", "track_name"]) | |
return df | |
def cosine_similarity(a, b): | |
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) | |
def find_songs(text): | |
df = get_dataframe() | |
text_embedding = get_embedding(text) | |
df["similarity"] = df["lyrics_embedding"].apply( | |
lambda x: cosine_similarity(x, text_embedding) | |
) | |
df = df.sort_values(by="similarity", ascending=False) | |
top_5 = df.head(5) | |
return "### 以下係你嘅歌名推介:\n" + "\n".join( | |
[ | |
f"- {row['artist_name']} 嘅 **[「{row['track_name']}」](https://open.spotify.com/track/{row['track_id']})**(相似度:{row['similarity']:.2f})" | |
for _, row in top_5.iterrows() | |
] | |
) | |
# Create Gradio application | |
import gradio as gr | |
async def create_demo(): | |
example1 = """故事開始於一個悲傷的雨夜,主角站在街頭,淋雨中凝視著遠方。心裡充滿了對一段失去的愛情的痛苦和迷惘。回想起往事,他感到愛情並非他當初所想像的那麼美好,無法找到回到對方身邊的路,更不用說如何忘記過往。 | |
淚水在眼底打轉,他感到迷失,不知道該往哪裡去,只是心中不斷地呼喚著對方的名字,渴望重新找回失去的愛。他開始思考,是應該安靜地離開這段過往,還是勇敢地留下來,面對愛情的種種無奈。 | |
在迷惘中,他決定給自己一個機會。或許他應該離開,或者他應該在原地等待,等待對方明白他所付出的愛是永遠不會離開的。這段故事充滿了對愛情的掙扎、遺憾和無奈,卻也帶著一絲希望和堅持。結局如何,只有時間能給予答案。""" | |
example2 = "跌咗嘢試下唔好搵" | |
example3 = "香港有國安法" | |
example4 = "雞!全部都係雞!" | |
description = """呢個 space 利用咗廣東話 Bert 語言模型,將歌詞轉換成向量,再用 cosine similarity 計算輸入嘅文字同 2394 首粵語歌唧歌詞之間嘅相似度,嚟畀出個歌名推介。 | |
⚠️ 要註意!呢個唔係關鍵字搜尋,而係用文字嘅意思去比對每首歌嘅歌詞內容,所以有時候會有啲奇怪嘅結果。 | |
""" | |
css = """ | |
.output { | |
padding: 10px; | |
min-height: 200px; | |
} | |
""" | |
demo = gr.Interface( | |
fn=find_songs, | |
css=css, | |
inputs=[ | |
gr.Textbox( | |
label="求其打啲嘢去搵歌名", | |
lines=5, | |
placeholder="請輸入歌詞", | |
), | |
], | |
outputs=[ | |
gr.Markdown(elem_classes="output"), | |
], | |
examples=[example1, example2, example3, example4], | |
title="粵語流行歌相似度", | |
description=description, | |
analytics_enabled=False, | |
allow_flagging=False, | |
) | |
return demo | |
# Run the application | |
if __name__ == "__main__": | |
demo = asyncio.run(create_demo()) | |
demo.launch() | |