Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
# Load the data from the CSV file | |
def load_data(): | |
df = pd.read_csv("llm_data.csv") # Update with your CSV file path | |
return df | |
df = load_data() | |
# Calculate example cost | |
def calculate_example_cost(input_text, output_text, input_ratio=0.000001, output_ratio=0.000001): | |
input_tokens = len(input_text) / 5 | |
output_tokens = len(output_text) / 5 | |
example_cost = (input_tokens * input_ratio) + (output_tokens * output_ratio) | |
return example_cost | |
# Sidebar inputs | |
input_text = st.sidebar.text_area("Input text") | |
output_text = st.sidebar.text_area("Output text") | |
# Calculate example cost for each row | |
df['Example cost'] = df.apply(lambda row: calculate_example_cost(input_text, output_text, row['Input']/1000000, row['Output']/1000000), axis=1) | |
st.title("LLM Cost Calculator") | |
st.write("Use this tool to compare LLM usage costs between different LLM APIs") | |
# Display sorted LLM costs | |
st.write("Sorted LLM Costs:") | |
sorted_df = df.sort_values(by='Example cost', ascending=False) | |
st.write(sorted_df[['Company', 'Model', 'Example cost']]) | |
# Plot visualization | |
st.write("Visualization of LLM Costs ($USD):") | |
plt.figure(figsize=(10, 6)) | |
plt.barh(sorted_df['Model'], sorted_df['Example cost'], color='skyblue') | |
plt.xlabel('Example Cost ($USD)') | |
plt.ylabel('LLM Model') | |
plt.title('LLM Usage Cost in US Dollars') | |
st.pyplot(plt) | |