hlydecker commited on
Commit
abb3630
·
1 Parent(s): 3f12637

WIP: App.py file but no data or env yet

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MegaDetector v5 Demo
2
+ import gradio as gr
3
+ import torch
4
+ import torchvision
5
+ import numpy as np
6
+ from PIL import Image
7
+
8
+ # Load MegaDetector v5a model
9
+ # TODO: Allow user selectable model?
10
+ model = torch.hub.load('ultralytics/yolov5', 'custom', "model_weights/md_v5a.0.0.pt")
11
+
12
+ def yolo(im, size=640):
13
+ g = (size / max(im.size)) # gain
14
+ im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
15
+
16
+ results = model(im) # inference
17
+ results.render() # updates results.imgs with boxes and labels
18
+ return Image.fromarray(results.imgs[0])
19
+
20
+
21
+ inputs = gr.inputs.Image(type='pil', label="Original Image")
22
+ outputs = gr.outputs.Image(type="pil", label="Output Image")
23
+
24
+ title = "MegaDetector v5"
25
+ description = "Detect and identify animals, people and vehicles in camera trap images"
26
+ article = "<p style='text-align: center'>This app makes predictions using a YOLOv5 model that was trained to detect animals, humans, and vehicles in camera trap images; find out more about the project on <a href='https://github.com/microsoft/CameraTraps'>GitHub</a>. This app was built by Henry Lydecker but really depends on code and models developed by <a href='http://ecologize.org/'>Ecologize</a> and <a href='http://aka.ms/aiforearth'>Microsoft AI for Earth</a>. Find out more about the YOLO model from the original creator, <a href='https://pjreddie.com/darknet/yolo/'>Joseph Redmon</a>. YOLOv5 is a family of compound-scaled object detection models trained on the COCO dataset and developed by Ultralytics, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. <a href='https://github.com/ultralytics/yolov5'>Source code</a> | <a href='https://pytorch.org/hub/ultralytics_yolov5'>PyTorch Hub</a></p>"
27
+
28
+ examples = [['data/Macropod.jpg'], ['data/koala2.jpg'],['data/cat.jpg'],['data/BrushtailPossum.jpg']]
29
+ gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(enable_queue=True)