File size: 10,451 Bytes
3c478c7 7f68f9f 3c478c7 2103a11 2820ed5 2103a11 b0fc80c d23c70e 2103a11 8142abe 6caec96 638e9bd 6caec96 3c478c7 7a48d5e 3c478c7 74d31de 3c478c7 7a48d5e 3c478c7 74d31de 3c478c7 7a48d5e 3c478c7 74d31de 3c478c7 7a48d5e 3c478c7 74d31de 3c478c7 7a48d5e 3c478c7 74d31de 3c478c7 638e9bd 3c478c7 2103a11 638e9bd 3c478c7 e5ce742 83a14ab 7a0d3bf 638e9bd e5ce742 3c478c7 7393cd1 7f9264a 638e9bd 7f9264a 3c478c7 02dd1a2 3c478c7 02dd1a2 3c478c7 83a14ab e5ce742 02dd1a2 638e9bd 02dd1a2 3be1481 e5ce742 3c478c7 e5ce742 3c478c7 e5ce742 3c478c7 e5ce742 3c478c7 638e9bd 83a14ab 3c478c7 4c4fe86 638e9bd 4c4fe86 638e9bd 4c4fe86 638e9bd 4b1f946 638e9bd 748e59d 638e9bd 4b1f946 3c478c7 3fe2bc3 103916a 3c478c7 f67c6da 8899d2c b120adf 40567ae a3a931f 676493e 360e6fe b1d5386 c72fcf9 8899d2c 638e9bd c72fcf9 638e9bd c72fcf9 638e9bd 3c478c7 1e32f27 02dd1a2 401b6e4 638e9bd 4ac1e56 4c4fe86 693b619 4b1f946 638e9bd 02dd1a2 c973019 638e9bd bb3705c 02dd1a2 bb3705c 638e9bd bb3705c 638e9bd bb3705c d23c70e 5b0c5d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import os
import json
import requests
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from huggingface_hub.repocard import metadata_load
from apscheduler.schedulers.background import BackgroundScheduler
from tqdm.contrib.concurrent import thread_map
from utils import make_clickable_model, make_clickable_user
from typing import List # Add this import statement
DATASET_REPO_URL = (
"https://huggingface.co/datasets/hivex-research/hivex-leaderboard-data"
)
DATASET_REPO_ID = "hivex-research/hivex-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")
block = gr.Blocks()
api = HfApi(token=HF_TOKEN)
# .tab-buttons button {
# font-size: 20px;
# }
custom_css = """
/* Full width space */
.gradio-container {
max-width: 95%!important;
}
.gr-dataframe table {
width: auto;
}
.gr-dataframe td, .gr-dataframe th {
white-space: nowrap;
text-overflow: ellipsis;
overflow: hidden;
width: 1%;
}
"""
# Pattern: 0 Default, 1 Grid, 2 Chain, 3 Circle, 4 Square, 5 Cross, 6 Two_Rows, 7 Field, 8 Random
pattern_map = {
0: "0: Default",
1: "1: Grid",
2: "2: Chain",
3: "3: Circle",
4: "4: Square",
5: "5: Cross",
6: "6: Two Rows",
7: "7: Field",
8: "8: Random",
}
hivex_envs = [
{
"title": "Wind Farm Control",
"hivex_env": "hivex-wind-farm-control",
"task_count": 2,
},
{
"title": "Wildfire Resource Management",
"hivex_env": "hivex-wildfire-resource-management",
"task_count": 3,
},
{
"title": "Drone-Based Reforestation",
"hivex_env": "hivex-drone-based-reforestation",
"task_count": 7,
},
{
"title": "Ocean Plastic Collection",
"hivex_env": "hivex-ocean-plastic-collection",
"task_count": 4,
},
{
"title": "Aerial Wildfire Suppression",
"hivex_env": "hivex-aerial-wildfire-suppression",
"task_count": 9,
},
]
def restart():
print("RESTART")
api.restart_space(repo_id="hivex-research/hivex-leaderboard")
def download_leaderboard_dataset():
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
return path
def get_total_models():
total_models = 0
for hivex_env in hivex_envs:
model_ids = get_model_ids(hivex_env["hivex_env"])
total_models += len(model_ids)
return total_models
def get_model_ids(hivex_env):
api = HfApi()
models = api.list_models(filter=hivex_env)
model_ids = [x.modelId for x in models]
return model_ids
def get_metadata(model_id):
try:
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
def update_leaderboard_dataset_parallel(hivex_env, path):
# Get model ids associated with hivex_env
model_ids = get_model_ids(hivex_env)
def process_model(model_id):
meta = get_metadata(model_id)
# LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
if meta is None:
return None
user_id = model_id.split("/")[0]
row = {}
row["User"] = user_id
row["Model"] = model_id
results = meta["model-index"][0]["results"][0]
row["Task-ID"] = results["task"]["task-id"]
row["Task"] = results["task"]["name"]
if "pattern-id" in results["task"] or "difficulty-id" in results["task"]:
key = "Pattern" if "pattern-id" in results["task"] else "Difficulty"
row[key] = (
pattern_map[results["task"]["pattern-id"]]
if "pattern-id" in results["task"]
else results["task"]["difficulty-id"]
)
results_metrics = results["metrics"]
for result in results_metrics:
row[result["name"]] = float(result["value"].split("+/-")[0].strip())
return row
data = list(thread_map(process_model, model_ids, desc="Processing models"))
# Filter out None results (models with no metadata)
data = [row for row in data if row is not None]
# ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
ranked_dataframe = pd.DataFrame.from_records(data)
new_history = ranked_dataframe
file_path = path + "/" + hivex_env + ".csv"
new_history.to_csv(file_path, index=False)
return ranked_dataframe
def run_update_dataset():
path_ = download_leaderboard_dataset()
for i in range(0, len(hivex_envs)):
hivex_env = hivex_envs[i]
update_leaderboard_dataset_parallel(hivex_env["hivex_env"], path_)
api.upload_folder(
folder_path=path_,
repo_id="hivex-research/hivex-leaderboard-data",
repo_type="dataset",
commit_message="Update dataset",
)
def get_data(rl_env, task_id, path) -> pd.DataFrame:
"""
Get data from rl_env, filter by the given task_id, and drop the Task-ID column.
Also drops any columns that have no data (all values are NaN) or all values are 0.0.
:return: filtered data as a pandas DataFrame without the Task-ID column
"""
csv_path = path + "/" + rl_env + ".csv"
data = pd.read_csv(csv_path)
# Filter the data to only include rows where the "Task-ID" column matches the given task_id
filtered_data = data[data["Task-ID"] == task_id]
# Drop the "Task-ID" column
filtered_data = filtered_data.drop(columns=["Task-ID"])
# Drop the "Task" column
filtered_data = filtered_data.drop(columns=["Task"])
# Drop columns that have no data (all values are NaN)
filtered_data = filtered_data.dropna(axis=1, how="all")
# Drop columns where all values are 0.0
filtered_data = filtered_data.loc[:, (filtered_data != 0.0).any(axis=0)]
# Convert User and Model columns to clickable links
for index, row in filtered_data.iterrows():
user_id = row["User"]
filtered_data.loc[index, "User"] = make_clickable_user(user_id)
model_id = row["Model"]
filtered_data.loc[index, "Model"] = make_clickable_model(model_id)
return filtered_data
def get_task(rl_env, task_id, path) -> str:
"""
Get the task name from the leaderboard dataset based on the rl_env and task_id.
:return: The task name as a string
"""
csv_path = path + "/" + rl_env + ".csv"
data = pd.read_csv(csv_path)
# Filter the data to find the row with the matching task_id
task_row = data[data["Task-ID"] == task_id]
# Check if the task exists and return the task name
if not task_row.empty:
task_name = task_row.iloc[0]["Task"]
return task_name
else:
return "Task not found"
def convert_to_title_case(text: str) -> str:
# Replace underscores with spaces
text = text.replace("_", " ")
# Convert each word to title case (capitalize the first letter)
title_case_text = text.title()
return title_case_text
def get_difficulty_pattern_ids_and_key(rl_env, path):
csv_path = path + "/" + rl_env + ".csv"
data = pd.read_csv(csv_path)
if "Pattern" in data.columns:
key = "Pattern"
difficulty_pattern_ids = data[key].unique()
elif "Difficulty" in data.columns:
key = "Difficulty"
difficulty_pattern_ids = data[key].unique()
else:
# Handle the case where neither 'Pattern' nor 'Difficulty' columns exist
key = None
difficulty_pattern_ids = []
return key, difficulty_pattern_ids
run_update_dataset()
block = gr.Blocks(css=custom_css) # Attach the custom CSS here
with block:
with gr.Row(elem_id="header-row"):
# TITLE IMAGE
gr.HTML(
"""
<div style="width: 50%; margin: 0 auto; text-align: center;">
<img
src="https://huggingface.co/spaces/hivex-research/hivex-leaderboard/resolve/main/hivex_logo.png"
alt="hivex logo"
style="width: 100px; display: inline-block; border-radius:20px;"
/>
<h1 style="font-weight: bold;">HIVEX Leaderboard</h1>
</div>
"""
)
with gr.Row(elem_id="header-row"):
gr.HTML(
f"<p style='text-align: center;'>Total models: {get_total_models()}</p>"
)
with gr.Row(elem_id="header-row"):
gr.HTML(
f"<p style='text-align: center;'>Get started π on our <a href='https://github.com/hivex-research/hivex'>GitHub repository</a>!</p>"
)
path_ = download_leaderboard_dataset()
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# ENVIRONMENT TABS
with gr.Tabs() as tabs: # elem_classes="tab-buttons"
for env_index in range(0, len(hivex_envs)):
hivex_env = hivex_envs[env_index]
with gr.Tab(f"{hivex_env['title']}") as env_tabs:
# Call the function to get the actual values
dp_key, difficulty_pattern_ids = get_difficulty_pattern_ids_and_key(
hivex_env["hivex_env"], path_
)
if dp_key is not None:
gr.CheckboxGroup([str(dp_id) for dp_id in difficulty_pattern_ids], label=dp_key)
# TASK TABS
for task_id in range(0, hivex_env["task_count"]):
task_title = convert_to_title_case(
get_task(hivex_env["hivex_env"], task_id, path_)
)
with gr.TabItem(f"Task {task_id}: {task_title}"):
with gr.Row():
data = get_data(hivex_env["hivex_env"], task_id, path_)
row_count = len(data) # Number of rows in the data
gr_dataframe = gr.components.Dataframe(
value=data,
headers=["User", "Model"],
datatype=["markdown", "markdown"],
row_count=(
row_count,
"fixed",
), # Set to the exact number of rows in the data
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart, "interval", seconds=86400)
scheduler.start()
block.launch()
|