File size: 10,451 Bytes
3c478c7
 
 
 
 
 
 
 
 
 
 
 
 
 
7f68f9f
 
3c478c7
 
 
 
 
 
 
 
 
2103a11
2820ed5
 
 
2103a11
 
 
 
 
 
b0fc80c
 
 
 
 
 
d23c70e
 
 
 
 
2103a11
8142abe
6caec96
638e9bd
 
 
 
 
 
 
 
 
 
 
6caec96
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
 
 
 
 
 
 
 
 
 
 
638e9bd
3c478c7
2103a11
 
 
 
 
 
638e9bd
3c478c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5ce742
83a14ab
 
7a0d3bf
 
638e9bd
 
 
 
 
e5ce742
 
 
 
3c478c7
 
 
 
 
 
 
 
 
7393cd1
7f9264a
638e9bd
7f9264a
3c478c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02dd1a2
3c478c7
02dd1a2
 
 
3c478c7
 
 
 
83a14ab
 
e5ce742
02dd1a2
 
 
 
 
 
 
638e9bd
02dd1a2
 
3be1481
 
e5ce742
 
3c478c7
e5ce742
3c478c7
e5ce742
3c478c7
e5ce742
3c478c7
638e9bd
83a14ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c478c7
4c4fe86
 
 
 
638e9bd
4c4fe86
 
638e9bd
4c4fe86
 
 
638e9bd
 
 
 
4b1f946
 
 
 
 
 
 
 
 
 
638e9bd
748e59d
638e9bd
 
4b1f946
3c478c7
 
3fe2bc3
103916a
3c478c7
f67c6da
8899d2c
 
b120adf
40567ae
a3a931f
 
676493e
360e6fe
b1d5386
c72fcf9
8899d2c
638e9bd
c72fcf9
638e9bd
 
 
c72fcf9
638e9bd
 
 
3c478c7
1e32f27
02dd1a2
401b6e4
638e9bd
4ac1e56
 
4c4fe86
693b619
 
 
 
 
4b1f946
 
638e9bd
02dd1a2
c973019
638e9bd
 
 
bb3705c
 
02dd1a2
bb3705c
638e9bd
bb3705c
 
 
 
638e9bd
 
 
 
bb3705c
d23c70e
 
5b0c5d4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os
import json
import requests

import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from huggingface_hub.repocard import metadata_load
from apscheduler.schedulers.background import BackgroundScheduler

from tqdm.contrib.concurrent import thread_map

from utils import make_clickable_model, make_clickable_user

from typing import List  # Add this import statement

DATASET_REPO_URL = (
    "https://huggingface.co/datasets/hivex-research/hivex-leaderboard-data"
)
DATASET_REPO_ID = "hivex-research/hivex-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")

block = gr.Blocks()
api = HfApi(token=HF_TOKEN)


# .tab-buttons button {
#     font-size: 20px;
# }

custom_css = """
/* Full width space */
.gradio-container {
  max-width: 95%!important;
}

.gr-dataframe table {
    width: auto;
}

.gr-dataframe td, .gr-dataframe th {
    white-space: nowrap;
    text-overflow: ellipsis;
    overflow: hidden;
    width: 1%;
}
"""

# Pattern: 0 Default, 1 Grid, 2 Chain, 3 Circle, 4 Square, 5 Cross, 6 Two_Rows, 7 Field, 8 Random
pattern_map = {
    0: "0: Default",
    1: "1: Grid",
    2: "2: Chain",
    3: "3: Circle",
    4: "4: Square",
    5: "5: Cross",
    6: "6: Two Rows",
    7: "7: Field",
    8: "8: Random",
}

hivex_envs = [
    {
        "title": "Wind Farm Control",
        "hivex_env": "hivex-wind-farm-control",
        "task_count": 2,
    },
    {
        "title": "Wildfire Resource Management",
        "hivex_env": "hivex-wildfire-resource-management",
        "task_count": 3,
    },
    {
        "title": "Drone-Based Reforestation",
        "hivex_env": "hivex-drone-based-reforestation",
        "task_count": 7,
    },
    {
        "title": "Ocean Plastic Collection",
        "hivex_env": "hivex-ocean-plastic-collection",
        "task_count": 4,
    },
    {
        "title": "Aerial Wildfire Suppression",
        "hivex_env": "hivex-aerial-wildfire-suppression",
        "task_count": 9,
    },
]


def restart():
    print("RESTART")
    api.restart_space(repo_id="hivex-research/hivex-leaderboard")


def download_leaderboard_dataset():
    path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
    return path


def get_total_models():
    total_models = 0
    for hivex_env in hivex_envs:
        model_ids = get_model_ids(hivex_env["hivex_env"])
        total_models += len(model_ids)
    return total_models


def get_model_ids(hivex_env):
    api = HfApi()
    models = api.list_models(filter=hivex_env)
    model_ids = [x.modelId for x in models]
    return model_ids


def get_metadata(model_id):
    try:
        readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
        return metadata_load(readme_path)
    except requests.exceptions.HTTPError:
        # 404 README.md not found
        return None


def update_leaderboard_dataset_parallel(hivex_env, path):
    # Get model ids associated with hivex_env
    model_ids = get_model_ids(hivex_env)

    def process_model(model_id):
        meta = get_metadata(model_id)
        # LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
        if meta is None:
            return None
        user_id = model_id.split("/")[0]
        row = {}
        row["User"] = user_id
        row["Model"] = model_id
        results = meta["model-index"][0]["results"][0]
        row["Task-ID"] = results["task"]["task-id"]
        row["Task"] = results["task"]["name"]
        if "pattern-id" in results["task"] or "difficulty-id" in results["task"]:
            key = "Pattern" if "pattern-id" in results["task"] else "Difficulty"
            row[key] = (
                pattern_map[results["task"]["pattern-id"]]
                if "pattern-id" in results["task"]
                else results["task"]["difficulty-id"]
            )

        results_metrics = results["metrics"]

        for result in results_metrics:
            row[result["name"]] = float(result["value"].split("+/-")[0].strip())

        return row

    data = list(thread_map(process_model, model_ids, desc="Processing models"))

    # Filter out None results (models with no metadata)
    data = [row for row in data if row is not None]

    # ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
    ranked_dataframe = pd.DataFrame.from_records(data)

    new_history = ranked_dataframe
    file_path = path + "/" + hivex_env + ".csv"
    new_history.to_csv(file_path, index=False)

    return ranked_dataframe


def run_update_dataset():
    path_ = download_leaderboard_dataset()
    for i in range(0, len(hivex_envs)):
        hivex_env = hivex_envs[i]
        update_leaderboard_dataset_parallel(hivex_env["hivex_env"], path_)

    api.upload_folder(
        folder_path=path_,
        repo_id="hivex-research/hivex-leaderboard-data",
        repo_type="dataset",
        commit_message="Update dataset",
    )


def get_data(rl_env, task_id, path) -> pd.DataFrame:
    """
    Get data from rl_env, filter by the given task_id, and drop the Task-ID column.
    Also drops any columns that have no data (all values are NaN) or all values are 0.0.
    :return: filtered data as a pandas DataFrame without the Task-ID column
    """
    csv_path = path + "/" + rl_env + ".csv"
    data = pd.read_csv(csv_path)

    # Filter the data to only include rows where the "Task-ID" column matches the given task_id
    filtered_data = data[data["Task-ID"] == task_id]

    # Drop the "Task-ID" column
    filtered_data = filtered_data.drop(columns=["Task-ID"])

    # Drop the "Task" column
    filtered_data = filtered_data.drop(columns=["Task"])

    # Drop columns that have no data (all values are NaN)
    filtered_data = filtered_data.dropna(axis=1, how="all")

    # Drop columns where all values are 0.0
    filtered_data = filtered_data.loc[:, (filtered_data != 0.0).any(axis=0)]

    # Convert User and Model columns to clickable links
    for index, row in filtered_data.iterrows():
        user_id = row["User"]
        filtered_data.loc[index, "User"] = make_clickable_user(user_id)
        model_id = row["Model"]
        filtered_data.loc[index, "Model"] = make_clickable_model(model_id)

    return filtered_data


def get_task(rl_env, task_id, path) -> str:
    """
    Get the task name from the leaderboard dataset based on the rl_env and task_id.
    :return: The task name as a string
    """
    csv_path = path + "/" + rl_env + ".csv"
    data = pd.read_csv(csv_path)

    # Filter the data to find the row with the matching task_id
    task_row = data[data["Task-ID"] == task_id]

    # Check if the task exists and return the task name
    if not task_row.empty:
        task_name = task_row.iloc[0]["Task"]
        return task_name
    else:
        return "Task not found"


def convert_to_title_case(text: str) -> str:
    # Replace underscores with spaces
    text = text.replace("_", " ")

    # Convert each word to title case (capitalize the first letter)
    title_case_text = text.title()

    return title_case_text


def get_difficulty_pattern_ids_and_key(rl_env, path):
    csv_path = path + "/" + rl_env + ".csv"
    data = pd.read_csv(csv_path)

    if "Pattern" in data.columns:
        key = "Pattern"
        difficulty_pattern_ids = data[key].unique()
    elif "Difficulty" in data.columns:
        key = "Difficulty"
        difficulty_pattern_ids = data[key].unique()
    else:
        # Handle the case where neither 'Pattern' nor 'Difficulty' columns exist
        key = None
        difficulty_pattern_ids = []

    return key, difficulty_pattern_ids



run_update_dataset()

block = gr.Blocks(css=custom_css)  # Attach the custom CSS here
with block:
    with gr.Row(elem_id="header-row"):
        # TITLE IMAGE
        gr.HTML(
            """
            <div style="width: 50%; margin: 0 auto; text-align: center;">
                <img
                  src="https://huggingface.co/spaces/hivex-research/hivex-leaderboard/resolve/main/hivex_logo.png"
                  alt="hivex logo"
                  style="width: 100px; display: inline-block; border-radius:20px;"
                />
                <h1 style="font-weight: bold;">HIVEX Leaderboard</h1>
            </div>
            """
        )
    with gr.Row(elem_id="header-row"):
        gr.HTML(
            f"<p style='text-align: center;'>Total models: {get_total_models()}</p>"
        )
    with gr.Row(elem_id="header-row"):
        gr.HTML(
            f"<p style='text-align: center;'>Get started πŸš€ on our <a href='https://github.com/hivex-research/hivex'>GitHub repository</a>!</p>"
        )

    path_ = download_leaderboard_dataset()
    # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    # ENVIRONMENT TABS
    with gr.Tabs() as tabs:  # elem_classes="tab-buttons"
        for env_index in range(0, len(hivex_envs)):
            hivex_env = hivex_envs[env_index]
            with gr.Tab(f"{hivex_env['title']}") as env_tabs:

                # Call the function to get the actual values
                dp_key, difficulty_pattern_ids = get_difficulty_pattern_ids_and_key(
                    hivex_env["hivex_env"], path_
                )
                if dp_key is not None:
                    gr.CheckboxGroup([str(dp_id) for dp_id in difficulty_pattern_ids], label=dp_key)

                # TASK TABS
                for task_id in range(0, hivex_env["task_count"]):
                    task_title = convert_to_title_case(
                        get_task(hivex_env["hivex_env"], task_id, path_)
                    )
                    with gr.TabItem(f"Task {task_id}: {task_title}"):
                        with gr.Row():
                            data = get_data(hivex_env["hivex_env"], task_id, path_)
                            row_count = len(data)  # Number of rows in the data

                            gr_dataframe = gr.components.Dataframe(
                                value=data,
                                headers=["User", "Model"],
                                datatype=["markdown", "markdown"],
                                row_count=(
                                    row_count,
                                    "fixed",
                                ),  # Set to the exact number of rows in the data
                            )


scheduler = BackgroundScheduler()
scheduler.add_job(restart, "interval", seconds=86400)
scheduler.start()

block.launch()