insta-maker / app.py
hivecorp's picture
Update app.py
f1e232e verified
raw
history blame
6.9 kB
import gradio as gr
from pydub import AudioSegment
import edge_tts
import os
import asyncio
import uuid
import re
# Function to get the length of an audio file in seconds
def get_audio_length(audio_file):
audio = AudioSegment.from_file(audio_file)
return audio.duration_seconds
# Function to format time for SRT
def format_time(seconds):
millis = int((seconds % 1) * 1000)
seconds = int(seconds)
hrs = seconds // 3600
mins = (seconds % 3600) // 60
secs = seconds % 60
return f"{hrs:02}:{mins:02}:{secs:02},{millis:03}"
# Function to split text into segments by punctuation or limit to 7-8 words
def split_text_into_segments(text):
segments = []
raw_segments = re.split(r'([.!?])', text)
for i in range(0, len(raw_segments) - 1, 2):
sentence = raw_segments[i].strip() + raw_segments[i + 1]
words = sentence.split()
if len(words) > 8:
for j in range(0, len(words), 8):
segments.append(" ".join(words[j:j + 8]))
else:
segments.append(sentence.strip())
if len(raw_segments) % 2 == 1:
remaining_text = raw_segments[-1].strip()
words = remaining_text.split()
for j in range(0, len(words), 8):
segments.append(" ".join(words[j:j + 8]))
return segments
# Function to generate SRT with accurate timing per batch
async def generate_accurate_srt(batch_text, batch_num, start_offset, pitch, rate, voice):
audio_file = f"batch_{batch_num}_audio.wav"
# Generate the audio using edge-tts
tts = edge_tts.Communicate(batch_text, voice, rate=rate, pitch=pitch)
await tts.save(audio_file)
# Get the actual length of the audio file
actual_length = get_audio_length(audio_file)
# Split the text into segments based on punctuation and word count
segments = split_text_into_segments(batch_text)
segment_duration = actual_length / len(segments) # Duration per segment
start_time = start_offset
# Initialize SRT content
srt_content = ""
for index, segment in enumerate(segments):
end_time = start_time + segment_duration
if end_time > start_offset + actual_length:
end_time = start_offset + actual_length
srt_content += f"{index + 1 + (batch_num * 100)}\n"
srt_content += f"{format_time(start_time)} --> {format_time(end_time)}\n"
srt_content += segment + "\n\n"
start_time = end_time
return srt_content, audio_file, start_time
# Batch processing function
async def batch_process_srt_and_audio(script_text, pitch, rate, voice, progress=gr.Progress()):
batches = [script_text[i:i + 500] for i in range(0, len(script_text), 500)]
all_srt_content = ""
combined_audio = AudioSegment.empty()
start_offset = 0.0
for batch_num, batch_text in enumerate(batches):
srt_content, audio_file, end_offset = await generate_accurate_srt(batch_text, batch_num, start_offset, pitch, rate, voice)
all_srt_content += srt_content
batch_audio = AudioSegment.from_file(audio_file)
combined_audio += batch_audio
start_offset = end_offset
os.remove(audio_file)
progress((batch_num + 1) / len(batches))
total_audio_length = combined_audio.duration_seconds
validated_srt_content = ""
for line in all_srt_content.strip().splitlines():
if '-->' in line:
start_str, end_str = line.split(' --> ')
start_time = sum(x * float(t) for x, t in zip([3600, 60, 1, 0.001], start_str.replace(',', ':').split(':')))
end_time = sum(x * float(t) for x, t in zip([3600, 60, 1, 0.001], end_str.replace(',', ':').split(':')))
if end_time > total_audio_length:
end_time = total_audio_length
line = f"{format_time(start_time)} --> {format_time(end_time)}"
validated_srt_content += line + "\n"
unique_id = uuid.uuid4()
final_audio_path = f"final_audio_{unique_id}.mp3"
final_srt_path = f"final_subtitles_{unique_id}.srt"
combined_audio.export(final_audio_path, format="mp3", bitrate="320k")
with open(final_srt_path, "w") as srt_file:
srt_file.write(validated_srt_content)
return final_srt_path, final_audio_path
# Gradio interface function
async def process_script(script_text, pitch, rate, voice):
# Format pitch correctly for edge-tts
pitch_str = f"{pitch}Hz" if pitch != 0 else "-1Hz"
formatted_rate = f"{'+' if rate > 1 else ''}{int(rate)}%"
srt_path, audio_path = await batch_process_srt_and_audio(script_text, pitch_str, formatted_rate, voice_options[voice])
return srt_path, audio_path, audio_path
# Gradio interface setup
voice_options = {
"Andrew Male": "en-US-AndrewNeural",
"Jenny Female": "en-US-JennyNeural",
"Guy Male": "en-US-GuyNeural",
"Ana Female": "en-US-AnaNeural",
"Aria Female": "en-US-AriaNeural",
"Brian Male": "en-US-BrianNeural",
"Christopher Male": "en-US-ChristopherNeural",
"Eric Male": "en-US-EricNeural",
"Michelle Male": "en-US-MichelleNeural",
"Roger Male": "en-US-RogerNeural",
"Natasha Female": "en-AU-NatashaNeural",
"William Male": "en-AU-WilliamNeural",
"Clara Female": "en-CA-ClaraNeural",
"Liam Female ": "en-CA-LiamNeural",
"Libby Female": "en-GB-LibbyNeural",
"Maisie": "en-GB-MaisieNeural",
"Ryan": "en-GB-RyanNeural",
"Sonia": "en-GB-SoniaNeural",
"Thomas": "en-GB-ThomasNeural",
"Sam": "en-HK-SamNeural",
"Yan": "en-HK-YanNeural",
"Connor": "en-IE-ConnorNeural",
"Emily": "en-IE-EmilyNeural",
"Neerja": "en-IN-NeerjaNeural",
"Prabhat": "en-IN-PrabhatNeural",
"Asilia": "en-KE-AsiliaNeural",
"Chilemba": "en-KE-ChilembaNeural",
"Abeo": "en-NG-AbeoNeural",
"Ezinne": "en-NG-EzinneNeural",
"Mitchell": "en-NZ-MitchellNeural",
"James": "en-PH-JamesNeural",
"Rosa": "en-PH-RosaNeural",
"Luna": "en-SG-LunaNeural",
"Wayne": "en-SG-WayneNeural",
"Elimu": "en-TZ-ElimuNeural",
"Imani": "en-TZ-ImaniNeural",
"Leah": "en-ZA-LeahNeural",
"Luke": "en-ZA-LukeNeural"
} # All voice options
app = gr.Interface(
fn=process_script,
inputs=[
gr.Textbox(label="Enter Script Text", lines=10),
gr.Slider(label="Pitch Adjustment (Hz)", minimum=-20, maximum=20, value=0, step=1),
gr.Slider(label="Rate Adjustment (%)", minimum=-50, maximum=50, value=-1, step=1),
gr.Dropdown(label="Select Voice", choices=list(voice_options.keys()), value="Andrew Male"),
],
outputs=[
gr.File(label="Download SRT File"),
gr.File(label="Download Audio File"),
gr.Audio(label="Audio Playback")
],
title="HIVEcorp Text-to-Speech with SRT Generation",
description="Convert your script into audio and generate subtitles.",
theme="compact",
)
app.launch()