insta-maker-2 / app.py
hivecorp's picture
Update app.py
ecaad35 verified
raw
history blame
21.8 kB
import gradio as gr
from pydub import AudioSegment
import edge_tts
import os
import asyncio
import uuid
import re
import time
import tempfile
from concurrent.futures import ThreadPoolExecutor
from typing import List, Tuple, Optional, Dict, Any
import math
from dataclasses import dataclass
class TimingManager:
def __init__(self):
self.current_time = 0
self.segment_gap = 100 # ms gap between segments
def get_timing(self, duration):
start_time = self.current_time
end_time = start_time + duration
self.current_time = end_time + self.segment_gap
return start_time, end_time
def get_audio_length(audio_file):
audio = AudioSegment.from_file(audio_file)
return len(audio) / 1000
def format_time_ms(milliseconds):
seconds, ms = divmod(int(milliseconds), 1000)
mins, secs = divmod(seconds, 60)
hrs, mins = divmod(mins, 60)
return f"{hrs:02}:{mins:02}:{secs:02},{ms:03}"
@dataclass
class Segment:
id: int
text: str
start_time: int = 0
end_time: int = 0
duration: int = 0
audio: Optional[AudioSegment] = None
lines: List[str] = None # Add lines field for display purposes only
class TextProcessor:
def __init__(self, words_per_line: int, lines_per_segment: int):
self.words_per_line = words_per_line
self.lines_per_segment = lines_per_segment
self.min_segment_words = 3
self.max_segment_words = words_per_line * lines_per_segment * 1.5 # Allow 50% more for natural breaks
self.punctuation_weights = {
'.': 1.0, # Strong break
'!': 1.0,
'?': 1.0,
';': 0.8, # Medium-strong break
':': 0.7,
',': 0.5, # Medium break
'-': 0.3, # Weak break
'(': 0.2,
')': 0.2
}
def analyze_sentence_complexity(self, text: str) -> float:
"""Analyze sentence complexity to determine optimal segment length"""
words = text.split()
complexity = 1.0
# Adjust for sentence length
if len(words) > self.words_per_line * 2:
complexity *= 1.2
# Adjust for punctuation density
punct_count = sum(text.count(p) for p in self.punctuation_weights.keys())
complexity *= (1 + (punct_count / len(words)) * 0.5)
return complexity
def find_natural_breaks(self, text: str) -> List[Tuple[int, float]]:
"""Find natural break points with their weights"""
breaks = []
words = text.split()
for i, word in enumerate(words):
weight = 0
# Check for punctuation
for punct, punct_weight in self.punctuation_weights.items():
if word.endswith(punct):
weight = max(weight, punct_weight)
# Check for natural phrase boundaries
phrase_starters = {'however', 'therefore', 'moreover', 'furthermore', 'meanwhile', 'although', 'because'}
if i < len(words) - 1 and words[i+1].lower() in phrase_starters:
weight = max(weight, 0.6)
# Check for conjunctions at natural points
if i > self.min_segment_words:
conjunctions = {'and', 'but', 'or', 'nor', 'for', 'yet', 'so'}
if word.lower() in conjunctions:
weight = max(weight, 0.4)
if weight > 0:
breaks.append((i, weight))
return breaks
def split_into_segments(self, text: str) -> List[Segment]:
# Normalize text and add proper spacing around punctuation
text = re.sub(r'\s+', ' ', text.strip())
text = re.sub(r'([.!?,;:])\s*', r'\1 ', text)
text = re.sub(r'\s+([.!?,;:])', r'\1', text)
# First, split into major segments by strong punctuation
segments = []
current_segment = []
current_text = ""
words = text.split()
i = 0
while i < len(words):
complexity = self.analyze_sentence_complexity(' '.join(words[i:i + self.words_per_line * 2]))
breaks = self.find_natural_breaks(' '.join(words[i:i + int(self.max_segment_words * complexity)]))
# Find best break point
best_break = None
best_weight = 0
for break_idx, weight in breaks:
actual_idx = i + break_idx
if (actual_idx - i >= self.min_segment_words and
actual_idx - i <= self.max_segment_words):
if weight > best_weight:
best_break = break_idx
best_weight = weight
if best_break is None:
# If no good break found, use maximum length
best_break = min(self.words_per_line * self.lines_per_segment, len(words) - i)
# Create segment
segment_words = words[i:i + best_break + 1]
segment_text = ' '.join(segment_words)
# Split segment into lines
lines = self.split_into_lines(segment_text)
final_segment_text = '\n'.join(lines)
segments.append(Segment(
id=len(segments) + 1,
text=final_segment_text
))
i += best_break + 1
return segments
def split_into_lines(self, text: str) -> List[str]:
"""Split segment text into natural lines"""
words = text.split()
lines = []
current_line = []
word_count = 0
for word in words:
current_line.append(word)
word_count += 1
# Check for natural line breaks
is_break = (
word_count >= self.words_per_line or
any(word.endswith(p) for p in '.!?') or
(word_count >= self.words_per_line * 0.7 and
any(word.endswith(p) for p in ',;:'))
)
if is_break:
lines.append(' '.join(current_line))
current_line = []
word_count = 0
if current_line:
lines.append(' '.join(current_line))
return lines
# IMPROVEMENT 1: Enhanced Error Handling
class TTSError(Exception):
"""Custom exception for TTS processing errors"""
pass
async def process_segment_with_timing(segment: Segment, voice: str, rate: str, pitch: str) -> Segment:
"""Process a complete segment as a single TTS unit with improved error handling"""
audio_file = os.path.join(tempfile.gettempdir(), f"temp_segment_{segment.id}_{uuid.uuid4()}.wav")
try:
# Process the entire segment text as one unit, replacing newlines with spaces
segment_text = ' '.join(segment.text.split('\n'))
tts = edge_tts.Communicate(segment_text, voice, rate=rate, pitch=pitch)
try:
await tts.save(audio_file)
except Exception as e:
raise TTSError(f"Failed to generate audio for segment {segment.id}: {str(e)}")
if not os.path.exists(audio_file) or os.path.getsize(audio_file) == 0:
raise TTSError(f"Generated audio file is empty or missing for segment {segment.id}")
try:
segment.audio = AudioSegment.from_file(audio_file)
# Reduced silence to 30ms for more natural flow
silence = AudioSegment.silent(duration=30)
segment.audio = silence + segment.audio + silence
segment.duration = len(segment.audio)
except Exception as e:
raise TTSError(f"Failed to process audio file for segment {segment.id}: {str(e)}")
return segment
except Exception as e:
if not isinstance(e, TTSError):
raise TTSError(f"Unexpected error processing segment {segment.id}: {str(e)}")
raise
finally:
if os.path.exists(audio_file):
try:
os.remove(audio_file)
except Exception:
pass # Ignore deletion errors
# IMPROVEMENT 2: Better File Management with cleanup
class FileManager:
"""Manages temporary and output files with cleanup capabilities"""
def __init__(self):
self.temp_dir = tempfile.mkdtemp(prefix="tts_app_")
self.output_files = []
self.max_files_to_keep = 5 # Keep only the 5 most recent output pairs
def get_temp_path(self, prefix):
"""Get a path for a temporary file"""
return os.path.join(self.temp_dir, f"{prefix}_{uuid.uuid4()}")
def create_output_paths(self):
"""Create paths for output files"""
unique_id = str(uuid.uuid4())
audio_path = os.path.join(self.temp_dir, f"final_audio_{unique_id}.mp3")
srt_path = os.path.join(self.temp_dir, f"final_subtitles_{unique_id}.srt")
self.output_files.append((srt_path, audio_path))
self.cleanup_old_files()
return srt_path, audio_path
def cleanup_old_files(self):
"""Clean up old output files, keeping only the most recent ones"""
if len(self.output_files) > self.max_files_to_keep:
old_files = self.output_files[:-self.max_files_to_keep]
for srt_path, audio_path in old_files:
try:
if os.path.exists(srt_path):
os.remove(srt_path)
if os.path.exists(audio_path):
os.remove(audio_path)
except Exception:
pass # Ignore deletion errors
# Update the list to only include files we're keeping
self.output_files = self.output_files[-self.max_files_to_keep:]
def cleanup_all(self):
"""Clean up all managed files"""
for srt_path, audio_path in self.output_files:
try:
if os.path.exists(srt_path):
os.remove(srt_path)
if os.path.exists(audio_path):
os.remove(audio_path)
except Exception:
pass # Ignore deletion errors
try:
os.rmdir(self.temp_dir)
except Exception:
pass # Ignore if directory isn't empty or can't be removed
# Create global file manager
file_manager = FileManager()
# IMPROVEMENT 3: Parallel Processing for Segments
async def generate_accurate_srt(
text: str,
voice: str,
rate: str,
pitch: str,
words_per_line: int,
lines_per_segment: int,
progress_callback=None,
parallel: bool = True,
max_workers: int = 4
) -> Tuple[str, str]:
"""Generate accurate SRT with parallel processing option"""
processor = TextProcessor(words_per_line, lines_per_segment)
segments = processor.split_into_segments(text)
total_segments = len(segments)
processed_segments = []
# Update progress to show segmentation is complete
if progress_callback:
progress_callback(0.1, "Text segmentation complete")
if parallel and total_segments > 1:
# Process segments in parallel
processed_count = 0
segment_tasks = []
# Create a semaphore to limit concurrent tasks
semaphore = asyncio.Semaphore(max_workers)
async def process_with_semaphore(segment):
async with semaphore:
nonlocal processed_count
try:
result = await process_segment_with_timing(segment, voice, rate, pitch)
processed_count += 1
if progress_callback:
progress = 0.1 + (0.8 * processed_count / total_segments)
progress_callback(progress, f"Processed {processed_count}/{total_segments} segments")
return result
except Exception as e:
# Handle errors in individual segments
processed_count += 1
if progress_callback:
progress = 0.1 + (0.8 * processed_count / total_segments)
progress_callback(progress, f"Error in segment {segment.id}: {str(e)}")
raise
# Create tasks for all segments
for segment in segments:
segment_tasks.append(process_with_semaphore(segment))
# Run all tasks and collect results
try:
processed_segments = await asyncio.gather(*segment_tasks)
except Exception as e:
if progress_callback:
progress_callback(0.9, f"Error during parallel processing: {str(e)}")
raise TTSError(f"Failed during parallel processing: {str(e)}")
else:
# Process segments sequentially (original method)
for i, segment in enumerate(segments):
try:
processed_segment = await process_segment_with_timing(segment, voice, rate, pitch)
processed_segments.append(processed_segment)
if progress_callback:
progress = 0.1 + (0.8 * (i + 1) / total_segments)
progress_callback(progress, f"Processed {i + 1}/{total_segments} segments")
except Exception as e:
if progress_callback:
progress_callback(0.9, f"Error processing segment {segment.id}: {str(e)}")
raise TTSError(f"Failed to process segment {segment.id}: {str(e)}")
# Sort segments by ID to ensure correct order
processed_segments.sort(key=lambda s: s.id)
if progress_callback:
progress_callback(0.9, "Finalizing audio and subtitles")
# Now combine the segments in the correct order
current_time = 0
final_audio = AudioSegment.empty()
srt_content = ""
for segment in processed_segments:
# Calculate precise timing
segment.start_time = current_time
segment.end_time = current_time + segment.duration
# Add to SRT with precise timing
srt_content += (
f"{segment.id}\n"
f"{format_time_ms(segment.start_time)} --> {format_time_ms(segment.end_time)}\n"
f"{segment.text}\n\n"
)
# Add to final audio with precise positioning
final_audio = final_audio.append(segment.audio, crossfade=0)
# Update timing with precise gap
current_time = segment.end_time
# Export with high precision
srt_path, audio_path = file_manager.create_output_paths()
try:
# Export with optimized quality settings and compression
export_params = {
'format': 'mp3',
'bitrate': '192k', # Reduced from 320k but still high quality
'parameters': [
'-ar', '44100', # Standard sample rate
'-ac', '2', # Stereo
'-compression_level', '0', # Best compression
'-qscale:a', '2' # High quality VBR encoding
]
}
final_audio.export(audio_path, **export_params)
with open(srt_path, "w", encoding='utf-8') as f:
f.write(srt_content)
except Exception as e:
if progress_callback:
progress_callback(1.0, f"Error exporting final files: {str(e)}")
raise TTSError(f"Failed to export final files: {str(e)}")
if progress_callback:
progress_callback(1.0, "Complete!")
return srt_path, audio_path
# IMPROVEMENT 4: Progress Reporting with proper error handling for older Gradio versions
async def process_text_with_progress(
text,
pitch,
rate,
voice,
words_per_line,
lines_per_segment,
parallel_processing,
progress=gr.Progress()
):
# Input validation
if not text or text.strip() == "":
return None, None, None, True, "Please enter some text to convert to speech."
# Format pitch and rate strings
pitch_str = f"{pitch:+d}Hz" if pitch != 0 else "+0Hz"
rate_str = f"{rate:+d}%" if rate != 0 else "+0%"
try:
# Start progress tracking
progress(0, "Preparing text...")
def update_progress(value, status):
progress(value, status)
srt_path, audio_path = await generate_accurate_srt(
text,
voice_options[voice],
rate_str,
pitch_str,
words_per_line,
lines_per_segment,
progress_callback=update_progress,
parallel=parallel_processing
)
# If successful, return results and hide error
return srt_path, audio_path, audio_path, False, ""
except TTSError as e:
# Return specific TTS error
return None, None, None, True, f"TTS Error: {str(e)}"
except Exception as e:
# Return any other error
return None, None, None, True, f"Unexpected error: {str(e)}"
# Voice options dictionary
voice_options = {
"Andrew Male": "en-US-AndrewNeural",
"Jenny Female": "en-US-JennyNeural",
"Guy Male": "en-US-GuyNeural",
"Ana Female": "en-US-AnaNeural",
"Aria Female": "en-US-AriaNeural",
"Brian Male": "en-US-BrianNeural",
"Christopher Male": "en-US-ChristopherNeural",
"Eric Male": "en-US-EricNeural",
"Michelle Male": "en-US-MichelleNeural",
"Roger Male": "en-US-RogerNeural",
"Natasha Female": "en-AU-NatashaNeural",
"William Male": "en-AU-WilliamNeural",
"Clara Female": "en-CA-ClaraNeural",
"Liam Female ": "en-CA-LiamNeural",
"Libby Female": "en-GB-LibbyNeural",
"Maisie": "en-GB-MaisieNeural",
"Ryan": "en-GB-RyanNeural",
"Sonia": "en-GB-SoniaNeural",
"Thomas": "en-GB-ThomasNeural",
"Sam": "en-HK-SamNeural",
"Yan": "en-HK-YanNeural",
"Connor": "en-IE-ConnorNeural",
"Emily": "en-IE-EmilyNeural",
"Neerja": "en-IN-NeerjaNeural",
"Prabhat": "en-IN-PrabhatNeural",
"Asilia": "en-KE-AsiliaNeural",
"Chilemba": "en-KE-ChilembaNeural",
"Abeo": "en-NG-AbeoNeural",
"Ezinne": "en-NG-EzinneNeural",
"Mitchell": "en-NZ-MitchellNeural",
"James": "en-PH-JamesNeural",
"Rosa": "en-PH-RosaNeural",
"Luna": "en-SG-LunaNeural",
"Wayne": "en-SG-WayneNeural",
"Elimu": "en-TZ-ElimuNeural",
"Imani": "en-TZ-ImaniNeural",
"Leah": "en-ZA-LeahNeural",
"Luke": "en-ZA-LukeNeural"
# Add other voices as needed
}
# Register cleanup on exit
import atexit
atexit.register(file_manager.cleanup_all)
# Create Gradio interface
with gr.Blocks(title="Advanced TTS with Configurable SRT Generation") as app:
gr.Markdown("# Advanced TTS with Configurable SRT Generation")
gr.Markdown("Generate perfectly synchronized audio and subtitles with natural speech patterns.")
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(label="Enter Text", lines=10, placeholder="Enter your text here...")
with gr.Column(scale=2):
voice_dropdown = gr.Dropdown(
label="Select Voice",
choices=list(voice_options.keys()),
value="Jenny Female"
)
pitch_slider = gr.Slider(
label="Pitch Adjustment (Hz)",
minimum=-10,
maximum=10,
value=0,
step=1
)
rate_slider = gr.Slider(
label="Rate Adjustment (%)",
minimum=-25,
maximum=25,
value=0,
step=1
)
with gr.Row():
with gr.Column():
words_per_line = gr.Slider(
label="Words per Line",
minimum=3,
maximum=12,
value=6,
step=1,
info="Controls how many words appear on each line of the subtitle"
)
with gr.Column():
lines_per_segment = gr.Slider(
label="Lines per Segment",
minimum=1,
maximum=4,
value=2,
step=1,
info="Controls how many lines appear in each subtitle segment"
)
with gr.Column():
parallel_processing = gr.Checkbox(
label="Enable Parallel Processing",
value=True,
info="Process multiple segments simultaneously for faster conversion (recommended for longer texts)"
)
submit_btn = gr.Button("Generate Audio & Subtitles")
# Add error message component
error_output = gr.Textbox(label="Status", visible=False)
with gr.Row():
with gr.Column():
audio_output = gr.Audio(label="Preview Audio")
with gr.Column():
srt_file = gr.File(label="Download SRT")
audio_file = gr.File(label="Download Audio")
# Handle button click with manual error handling instead of .catch()
submit_btn.click(
fn=process_text_with_progress,
inputs=[
text_input,
pitch_slider,
rate_slider,
voice_dropdown,
words_per_line,
lines_per_segment,
parallel_processing
],
outputs=[
srt_file,
audio_file,
audio_output,
error_output,
error_output
],
api_name="generate"
)
if __name__ == "__main__":
app.launch()