Spaces:
Sleeping
Sleeping
File size: 1,368 Bytes
20b3af9 30231a5 20b3af9 d2883dc 20b3af9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
from transformers import AutoTokenizer
from huggingface_hub import repo_exists
def token_viz(model_name, text):
if not repo_exists(model_name):
gr.Error(f"{model_name} is not a valid HF repo. Please enter a valid repo.")
tokenizer = AutoTokenizer.from_pretrained(model_name,cache_dir=f"./.cache/hf/{model_name}")
print(model_name,text)
tokens = tokenizer.encode(text)
return [(tokenizer.decode(token).replace("\n",r"\n"), str(token)) for token in tokens] # Replacing '\n' for visualization purposes
MARKDOWN = """
<h1 style='text-align: center; margin-bottom: 1rem'><div align="center">Token Visualizer ⚔️</div></h1>
Enter the Tokenizer you want to use to visualize the tokens.
Example: To use <https://huggingface.co/Qwen/Qwen2-72B-Instruct> model's tokenizer just enter **Qwen/Qwen2-72B-Instruct**
"""
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
model_name = gr.Textbox(label="repo_name",interactive=True,placeholder="Enter the HF model here...")
text = gr.Textbox(label="text",interactive=True, placeholder="Enter the text to be tokenized")
output1 = gr.HighlightedText(show_inline_category=True)
btn = gr.Button("Run")
btn.click(token_viz, inputs=[model_name, text], outputs=[output1])
demo.queue().launch() |