File size: 2,035 Bytes
adb6e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from typing import List, Dict, Any
from collections import defaultdict
import statistics

import datasets
import evaluate
from FLD_task import build_metrics


_DESCRIPTION = ""
_KWARGS_DESCRIPTION = ""
_CITATION = ""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class FLDMetrics(evaluate.Metric):

    def __init__(self, *args, log_samples=False, **kwargs):
        super().__init__(*args, **kwargs)
        self._metric_funcs = {
            'strct': build_metrics('strict'),
            'extr_stps': build_metrics('allow_extra_steps'),
        }
        self.log_samples = log_samples

    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "predictions": datasets.Value("string"),
                    "references": datasets.Sequence(datasets.Value("string")),
                    "contexts": datasets.Value("string"),
                }
            ),
            # reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html"],
        )

    def _compute(self, predictions, references, contexts):
        if contexts is None:
            contexts = [None] * len(predictions)

        metrics: Dict[str, List[Any]] = defaultdict(list)
        for pred, golds, context in zip(predictions, references, contexts):
            for metric_type, calc_metrics in self._metric_funcs.items():
                _metrics = calc_metrics(
                    golds,
                    pred,
                    context=context,
                )
                for metric_name, metric_val in _metrics.items():
                    metrics[f"{metric_type}.{metric_name}"].append(metric_val)
        results = {}
        for metric_name, metric_vals in metrics.items():
            results[f"{metric_name}"] = statistics.mean(metric_vals)
        return results