histlearn commited on
Commit
53facf1
1 Parent(s): a7cd38e

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +67 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoProcessor, AutoModelForCausalLM, MarianMTModel, MarianTokenizer
3
+ from PIL import Image
4
+ import torch
5
+ import matplotlib.pyplot as plt
6
+ from gtts import gTTS
7
+ from IPython.display import Audio
8
+
9
+ # Funções auxiliares
10
+ def prepare_image(image_path):
11
+ image = Image.open(image_path).convert("RGB")
12
+ inputs = processor(images=image, return_tensors="pt").to(device)
13
+ return image, inputs.pixel_values
14
+
15
+ def generate_caption(pixel_values):
16
+ model.eval()
17
+ with torch.no_grad():
18
+ generated_ids = model.generate(
19
+ pixel_values=pixel_values,
20
+ max_length=50,
21
+ num_beams=4,
22
+ early_stopping=True,
23
+ no_repeat_ngram_size=2
24
+ )
25
+ return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
26
+
27
+ def translate_to_portuguese(text):
28
+ inputs = translation_tokenizer(text, return_tensors="pt", truncation=True).to(device)
29
+ translated_ids = translation_model.generate(inputs["input_ids"], max_length=50, num_beams=4, early_stopping=True)
30
+ return translation_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0]
31
+
32
+ def text_to_speech_gtts(text, lang='pt'):
33
+ tts = gTTS(text=text, lang=lang)
34
+ tts.save("output.mp3")
35
+ return "output.mp3"
36
+
37
+ # Carregar os modelos
38
+ processor = AutoProcessor.from_pretrained("microsoft/git-large-textcaps")
39
+ model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-textcaps")
40
+ translation_model_name = 'Helsinki-NLP/opus-mt-tc-big-en-pt'
41
+ translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
42
+ translation_model = MarianMTModel.from_pretrained(translation_model_name)
43
+
44
+ # Configurar o dispositivo (GPU ou CPU)
45
+ device = "cuda" if torch.cuda.is_available() else "cpu"
46
+ model.to(device)
47
+ translation_model.to(device)
48
+
49
+ # Função principal para processar a imagem e gerar a voz
50
+ def image_to_voice(image):
51
+ image, pixel_values = prepare_image(image)
52
+ caption_en = generate_caption(pixel_values)
53
+ caption_pt = translate_to_portuguese(caption_en)
54
+ audio_file = text_to_speech_gtts(caption_pt)
55
+ return caption_pt, audio_file
56
+
57
+ # Interface Gradio
58
+ demo = gr.Interface(
59
+ fn=image_to_voice,
60
+ inputs=gr.inputs.Image(type="filepath"),
61
+ outputs=[gr.outputs.Textbox(), gr.outputs.Audio(type="file")],
62
+ title="Image to Voice",
63
+ description="Gera uma descrição em português e a converte em voz a partir de uma imagem."
64
+ )
65
+
66
+ if __name__ == "__main__":
67
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ transformers
2
+ datasets
3
+ sentencepiece
4
+ gtts
5
+ IPython
6
+ gradio