Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForCausalLM, MarianMTModel, MarianTokenizer | |
from PIL import Image | |
import torch | |
from gtts import gTTS | |
import os | |
# Funções auxiliares | |
def prepare_image(image_path): | |
image = Image.open(image_path).convert("RGB") | |
inputs = processor(images=image, return_tensors="pt").to(device) | |
return image, inputs.pixel_values | |
def generate_caption(pixel_values): | |
model.eval() | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
pixel_values=pixel_values, | |
max_length=50, | |
num_beams=4, | |
early_stopping=True, | |
no_repeat_ngram_size=2 | |
) | |
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
def translate_to_portuguese(text): | |
inputs = translation_tokenizer(text, return_tensors="pt", truncation=True).to(device) | |
translated_ids = translation_model.generate(inputs["input_ids"], max_length=50, num_beams=4, early_stopping=True) | |
return translation_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0] | |
def text_to_speech_gtts(text, lang='pt'): | |
tts = gTTS(text=text, lang=lang) | |
tts.save("output.mp3") | |
return "output.mp3" | |
# Carregar os modelos | |
processor = AutoProcessor.from_pretrained("microsoft/git-base") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/git-base") | |
translation_model_name = 'Helsinki-NLP/opus-mt-tc-big-en-pt' | |
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name) | |
translation_model = MarianMTModel.from_pretrained(translation_model_name) | |
# Configurar o dispositivo (GPU ou CPU) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
translation_model.to(device) | |
# Função principal para processar a imagem e gerar a voz | |
def process_image(image): | |
_, pixel_values = prepare_image(image) | |
caption_en = generate_caption(pixel_values) | |
caption_pt = translate_to_portuguese(caption_en) | |
audio_file = text_to_speech_gtts(caption_pt) | |
return caption_pt, audio_file | |
# Caminhos para as imagens de exemplo (supondo que estejam no mesmo diretório que o script) | |
example_image_paths = [ | |
"example1.png", | |
"example2.png", | |
"example3.png" | |
] | |
# Interface Gradio | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.Image(type="filepath"), | |
outputs=[gr.Textbox(), gr.Audio(type="filepath")], | |
examples=example_image_paths, | |
title="Image to Voice", | |
description="Gera uma descrição em português e a converte em voz a partir de uma imagem." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |