File size: 11,371 Bytes
0319a9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import pandas as pd
import os
from tqdm import tqdm
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
class Database:
def __init__(self, parquet_path=None, customized_parquets = None):
self.default_parquet_path = 'datas/database_4000.parquet'
self.parquet_path = parquet_path or self.default_parquet_path
self.default_customized_parquets = ["datas/customized_database_0.parquet"]
self.customized_parquets = customized_parquets or self.default_customized_parquets
self.datas = None
self.last_save_table = None
if os.path.exists(self.parquet_path):
self.load_from_parquet(self.parquet_path)
self.load_from_customized(self.customized_parquets)
self.clip_extractor = None
self.bge_extractor = None
self.en_keyword2data = {}
def build_en_keyword2index(self):
# build in lower case
self.en_keyword2data = {row['translated_word'].lower(): row for i, row in self.datas.iterrows()}
def search_by_en_keyword(self, keyword):
if len(self.en_keyword2data) == 0:
self.build_en_keyword2index()
keyword = keyword.lower()
if keyword in self.en_keyword2data:
ans = self.en_keyword2data[keyword].to_dict()
del ans["clip_feature"]
del ans["bge_feature"]
return ans
else:
return None
def load_from_parquet(self, parquet_path):
self.datas = pd.read_parquet(parquet_path)
def load_from_customized(self, customized_parquets=None):
customized_parquets = customized_parquets or self.customized_parquets
# Load each parquet file and concatenate them into the self.datas DataFrame
for index, parquet_file in enumerate(customized_parquets):
if os.path.exists(parquet_file):
temp_df = pd.read_parquet(parquet_file)
if self.datas is None:
self.datas = temp_df
else:
self.datas = pd.concat([self.datas, temp_df], ignore_index=True)
# if last parquet file
if index == len(customized_parquets) - 1:
self.last_save_table = temp_df
# if customized_parquets:
# Record the last parquet file's contents as self.last_save_table
def add_data(self, data, if_save=True):
required_columns = ['keyword', 'name_in_cultivation', 'description_in_cultivation', 'translated_word', 'description']
for column in required_columns:
if column not in data:
raise ValueError(f"Missing required field: {column}")
# Optional field
if 'founder' not in data:
data['founder'] = ""
# Extract features
if self.clip_extractor is None:
self.init_clip_extractor()
if self.bge_extractor is None:
self.init_bge_extractor()
data['clip_feature'] = self.clip_extractor.extract_text(data['translated_word'] + '.' + data['description'])
data['bge_feature'] = self.bge_extractor.extract([data['keyword']])[0].tolist()
# Convert to DataFrame and add to self.datas
data_df = pd.DataFrame([data])
if self.datas is None:
self.datas = data_df
else:
self.datas = pd.concat([self.datas, data_df], ignore_index=True)
# set self.en_keyword2data to last row of self.datas
self.en_keyword2data[data['translated_word'].lower()] = self.datas.iloc[-1]
# Add to last_save_table
if self.last_save_table is None:
# self.last_save_table = data_df
# create a new DataFrame with the same columns as self.datas
self.last_save_table = pd.DataFrame(columns=self.datas.columns)
self.last_save_table = pd.concat([self.last_save_table, data_df], ignore_index=True)
if if_save:
self.save_to_parquet(self.customized_parquets[-1], self.last_save_table )
def add_datas(self, datas, if_save=True):
for data in datas:
self.add_data(data, if_save=False)
if if_save:
self.save_to_parquet(self.customized_parquets[-1], self.last_save_table)
def init_from_excel(self, excel_path):
df = pd.read_excel(excel_path)
# Drop rows with any empty cell in the required columns
df.dropna(subset=['keyword', 'name_in_cultivation', 'description_in_cultivation', 'translated_word', 'description'], inplace=True)
# Add the new columns
df['clip_feature'] = None
df['bge_feature'] = None
self.datas = df
self.extract_clip()
self.extract_bge()
def save_to_parquet(self, parquet_path=None, df = None):
parquet_path = parquet_path or self.default_parquet_path
if df is None:
if self.datas is not None:
self.datas.to_parquet(parquet_path)
else:
df.to_parquet(parquet_path)
def init_clip_extractor(self):
if self.clip_extractor is None:
try:
from CLIPExtractor import CLIPExtractor
except:
from src.CLIPExtractor import CLIPExtractor
cache_dir = "models"
self.clip_extractor = CLIPExtractor(model_name = "openai/clip-vit-large-patch14",cache_dir = cache_dir)
def extract_clip(self):
if self.clip_extractor is None:
self.init_clip_extractor()
clip_features = []
# for text in tqdm(self.datas['keyword'], desc='Extracting CLIP features'):
for index, row in tqdm(self.datas.iterrows(), desc='Extracting CLIP features', total=len(self.datas)):
text = row['translated_word'] + '.' + row['description']
if text:
feature = self.clip_extractor.extract_text(text)
else:
feature = None
clip_features.append(feature)
self.datas['clip_feature'] = clip_features
def init_bge_extractor(self):
if self.bge_extractor is None:
try:
from text_embedding import TextExtractor
except:
from src.text_embedding import TextExtractor
self.bge_extractor = TextExtractor('BAAI/bge-small-zh-v1.5')
def top_k_search(self, query_feature, attribute, top_k=15):
# Ensure the attribute exists in the dataframe
if attribute not in self.datas.columns:
raise ValueError(f"Attribute {attribute} not found in the data.")
# Convert query feature and attribute features to numpy arrays
query_feature = np.array(query_feature).reshape(1, -1)
attribute_features = np.stack(self.datas[attribute].dropna().values)
# Compute cosine similarity between query and all attributes
similarities = cosine_similarity(query_feature, attribute_features)[0]
# Get the top_k indices based on similarity
top_k_indices = np.argsort(similarities)[-top_k:][::-1]
# Retrieve the top_k most similar items
top_k_results = self.datas.iloc[top_k_indices].copy()
top_k_results = top_k_results.drop(columns=['clip_feature', 'bge_feature'])
top_k_results['similarity'] = similarities[top_k_indices]
return top_k_results.to_dict(orient='records')
def search_with_image_name(self, image_name):
self.init_clip_extractor()
img_feature = self.clip_extractor.extract_image_from_file(image_name)
return self.top_k_search(img_feature, 'clip_feature')
def search_with_image(self, image, if_opencv = False ):
if self.clip_extractor is None:
self.init_clip_extractor()
img_feature = self.clip_extractor.extract_image(image, if_opencv = if_opencv)
return self.top_k_search(img_feature, 'clip_feature')
def search_with_chinese(self, text):
if self.bge_extractor is None:
self.init_bge_extractor()
text_feature = self.bge_extractor.extract([text])[0].tolist()
return self.top_k_search(text_feature, 'bge_feature')
def extract_bge(self):
if self.bge_extractor is None:
self.init_bge_extractor()
# Extract features for each row and store them in the bge_feature column
bge_features = []
for text in tqdm(self.datas['keyword'], desc='Extracting BGE features'):
if text:
feature = self.bge_extractor.extract([text])[0].tolist()
else:
feature = None
bge_features.append(feature)
self.datas['bge_feature'] = bge_features
if __name__ == '__main__':
# Usage example
db = Database()
re_extract = False
if db.datas is None or re_extract:
print("Rebuilding database from excel file")
db.init_from_excel('datas/database_4000.xlsx')
db.save_to_parquet()
# print(db.datas[0].keys())
query_text = "钢琴"
results = db.search_with_chinese(query_text)
print(results[0].keys())
for result in results[:3]:
print(result)
image_path = "datas/老虎.jpg"
results = db.search_with_image_name(image_path)
for result in results[:3]:
print(result)
# 'keyword': '老虎狗', 'name_in_cultivation': '灵虎犬神', 'description_in_cultivation': '在九天灵脉汇聚的仙山之巅,灵虎犬神身披星图
# 斑纹,汲取日月精华,以雷霆之力守护仙脉,其双眼中映照着轮回之道,是修仙者追寻天地真理的指引,也是象征极致灵性的神秘灵兽。', 'translated_word': 'Tiger Dog', 'description': 'A Tiger Dog is a term that might refer to a mythical creature or a breed of dog with a distinctive and unusual appearance, resembling the features of a tiger. It could be characterized by its striking coat with patterns similar to those of a tiger, or by having a demeanor that is fierce and majestic like a tiger. This term is not commonly used in
# conventional contexts and might be found in stories, folktales, or in the names of unique dog breeds that have been bred to exhibit such features.', 'founder': ''
# test_new_data = {
# "keyword": "老虎狗2",
# "name_in_cultivation": "灵虎犬神",
# "description_in_cultivation": "在九天灵脉汇聚的仙山之巅,灵虎犬神身披星图斑纹,汲取日月精华,以雷霆之力守护仙脉,其双眼中映照着轮回之道,是修仙者追寻天地真理的指引,也是象征极致灵性的神秘灵兽。",
# "translated_word": "Tiger Dog",
# "description":"A Tiger Dog is a term that might refer to a mythical creature or a breed of dog with a distinctive and unusual appearance, resembling the features of a tiger. It could be characterized by its striking coat with patterns similar to those of a tiger, or by having a demeanor that is fierce and majestic like a tiger. This term is not commonly used in conventional contexts and might be found in stories, folktales, or in the names of unique dog breeds that have been bred to exhibit such features."
# }
# db.add_data(test_new_data) |