File size: 7,207 Bytes
050a9de 65cfe9e 050a9de 65cfe9e 050a9de 23c644c a5c4771 3ec873b 65cfe9e 050a9de 65cfe9e 050a9de 906a076 050a9de 65cfe9e 050a9de a5c4771 65cfe9e a5c4771 050a9de 65cfe9e a5c4771 050a9de 65cfe9e a5c4771 65cfe9e a5c4771 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 906a076 65cfe9e 906a076 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 3ec873b 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 65cfe9e 3ec873b a5c4771 050a9de 65cfe9e 050a9de 65cfe9e 050a9de 3ec873b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
import pandas as pd
import json
from constants import (
BANNER,
INTRODUCTION_TEXT,
CITATION_TEXT,
METRICS_TAB_TEXT,
DIR_OUTPUT_REQUESTS,
)
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import (
AutoEvalColumn,
fields,
make_clickable_model,
styled_error,
styled_message,
)
from datetime import datetime, timezone
LAST_UPDATED = "September, 7th 2023"
GPU_MODEL = "NVIDIA Tesla M60"
column_names = {
"model": "model",
"AP-IoU=0.50:0.95-area=all-maxDets=100": "AP",
"AP-IoU=0.50-area=all-maxDets=100": "[email protected]",
"AP-IoU=0.75-area=all-maxDets=100": "[email protected]",
"AP-IoU=0.50:0.95-area=small-maxDets=100": "AP-S",
"AP-IoU=0.50:0.95-area=medium-maxDets=100": "AP-M",
"AP-IoU=0.50:0.95-area=large-maxDets=100": "AP-L",
"AR-IoU=0.50:0.95-area=all-maxDets=1": "AR1",
"AR-IoU=0.50:0.95-area=all-maxDets=10": "AR10",
"AR-IoU=0.50:0.95-area=all-maxDets=100": "AR100",
"AR-IoU=0.50:0.95-area=small-maxDets=100": "AR-S",
"AR-IoU=0.50:0.95-area=medium-maxDets=100": "AR-M",
"AR-IoU=0.50:0.95-area=large-maxDets=100": "AR-L",
"estimated_fps": "FPS(*)",
"hub_license": "hub license",
}
eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub()
if not csv_results.exists():
raise Exception(f"CSV file {csv_results} does not exist locally")
# Get csv with data and parse columns
original_df = pd.read_csv(csv_results)
lst_evaluated_models = original_df["model"].tolist()
lst_evaluated_models = list(map(str.lower, lst_evaluated_models))
# Formats the columns
def decimal_formatter(x):
x = "{:.2f}".format(x)
return x
def perc_formatter(x):
x = "{:.2%}".format(x)
while len(x) < 6:
x = f"0{x}"
return x
# Drop columns not specified in dictionary
cols_to_drop = [col for col in original_df.columns if col not in column_names]
original_df.drop(cols_to_drop, axis=1, inplace=True)
for col in original_df.columns:
if col == "model":
original_df[col] = original_df[col].apply(
lambda x: x.replace(x, make_clickable_model(x))
)
elif col == "estimated_fps":
original_df[col] = original_df[col].apply(
decimal_formatter
) # For decimal values
elif col == "hub_license":
continue
else:
original_df[col] = original_df[col].apply(perc_formatter) # For % values
original_df.rename(columns=column_names, inplace=True)
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
def request_model(model_text, chbcoco2017):
# Determine the selected checkboxes
dataset_selection = []
if chbcoco2017:
dataset_selection.append("COCO validation 2017 dataset")
if len(dataset_selection) == 0:
return styled_error("You need to select at least one dataset")
# Check if model exists on the hub
base_model_on_hub, error_msg = is_model_on_hub(model_text)
if not base_model_on_hub:
return styled_error(f"Base model '{model_text}' {error_msg}")
# Check if model is already evaluated
model_text = model_text.replace(" ", "")
if model_text.lower() in lst_evaluated_models:
return styled_error(
f"Results of the model '{model_text}' are now ready and available."
)
# Construct the output dictionary
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
required_datasets = ", ".join(dataset_selection)
eval_entry = {
"date": current_time,
"model": model_text,
"datasets_selected": required_datasets,
}
# Prepare file path
DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)
fn_datasets = "@ ".join(dataset_selection)
filename = model_text.replace("/", "@") + "@@" + fn_datasets
if filename in requested_models:
return styled_error(
f"A request for this model '{model_text}' and dataset(s) was already made."
)
try:
filename_ext = filename + ".txt"
out_filepath = DIR_OUTPUT_REQUESTS / filename_ext
# Write the results to a text file
with open(out_filepath, "w") as f:
f.write(json.dumps(eval_entry))
upload_file(filename, out_filepath)
# Include file in the list of uploaded files
requested_models.append(filename)
# Remove the local file
out_filepath.unlink()
return styled_message(
"π€ Your request has been submitted and will be evaluated soon!</p>"
)
except Exception:
return styled_error("Error submitting request!")
with gr.Blocks() as demo:
gr.HTML(BANNER, elem_id="banner")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
COCO val 2017", elem_id="od-benchmark-tab-table", id=0):
leaderboard_table = gr.components.Dataframe(
value=original_df,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
with gr.TabItem("π Metrics", elem_id="od-benchmark-tab-table", id=1):
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")
with gr.TabItem(
"βοΈβ¨ Request a model here!", elem_id="od-benchmark-tab-table", id=2
):
with gr.Column():
gr.Markdown(
"# βοΈβ¨ Request results for a new model here!",
elem_classes="markdown-text",
)
with gr.Column():
gr.Markdown("Select a dataset:", elem_classes="markdown-text")
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name (user_name/model_name)"
)
chb_coco2017 = gr.Checkbox(
label="COCO validation 2017 dataset",
visible=False,
value=True,
interactive=False,
)
with gr.Column():
mdw_submission_result = gr.Markdown()
btn_submitt = gr.Button(value="π Request")
btn_submitt.click(
request_model,
[model_name_textbox, chb_coco2017],
mdw_submission_result,
)
gr.Markdown(
f'(*) FPS was measured using *{GPU_MODEL}* processing 1 image per batch. Refer to the π "Metrics" tab for further details.',
elem_classes="markdown-text",
)
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
gr.Textbox(
value=CITATION_TEXT,
lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True,
)
demo.launch()
|