|
import gradio as gr |
|
from transformers import AutoTokenizer, GPTJForCausalLM |
|
|
|
model_name = "rycont/kakaobrain__kogpt-6b-8bit" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = GPTJForCausalLM.from_pretrained(model_name) |
|
|
|
def generate_response(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(inputs['input_ids'], max_new_tokens=50) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
|
|
iface = gr.Interface( |
|
fn=generate_response, |
|
inputs="text", |
|
outputs="text", |
|
title="KoGPT-6B Chatbot", |
|
description="Enter a prompt and the model will generate a response." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|