File size: 5,190 Bytes
b34efa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# Document Processing Pipeline Design
This document outlines the design for the document processing pipeline of our Norwegian RAG-based chatbot. The pipeline will transform raw documents into embeddings that can be efficiently retrieved during the chat process.
## Pipeline Overview
```
Raw Documents → Text Extraction → Text Chunking → Text Cleaning → Embedding Generation → Vector Storage
```
## Components
### 1. Text Extraction
**Purpose**: Extract plain text from various document formats.
**Supported Formats**:
- PDF (.pdf)
- Word Documents (.docx, .doc)
- Text files (.txt)
- HTML (.html, .htm)
- Markdown (.md)
**Implementation**:
- Use PyPDF2 for PDF extraction
- Use python-docx for Word documents
- Use BeautifulSoup for HTML parsing
- Direct reading for text and markdown files
### 2. Text Chunking
**Purpose**: Split documents into manageable chunks for more precise retrieval.
**Chunking Strategies**:
- Fixed size chunks (512 tokens recommended for Norwegian text)
- Semantic chunking (split at paragraph or section boundaries)
- Overlapping chunks (100-token overlap recommended)
**Implementation**:
- Use LangChain's text splitters
- Implement custom Norwegian-aware chunking logic
### 3. Text Cleaning
**Purpose**: Normalize and clean text to improve embedding quality.
**Cleaning Operations**:
- Remove excessive whitespace
- Normalize Norwegian characters (æ, ø, å)
- Remove irrelevant content (headers, footers, page numbers)
- Handle special characters and symbols
**Implementation**:
- Custom text cleaning functions
- Norwegian-specific normalization rules
### 4. Embedding Generation
**Purpose**: Generate vector representations of text chunks.
**Embedding Model**:
- Primary: NbAiLab/nb-sbert-base (768 dimensions)
- Alternative: FFI/SimCSE-NB-BERT-large
**Implementation**:
- Use sentence-transformers library
- Batch processing for efficiency
- Caching mechanism for frequently embedded chunks
### 5. Vector Storage
**Purpose**: Store and index embeddings for efficient retrieval.
**Storage Options**:
- Primary: FAISS (Facebook AI Similarity Search)
- Alternative: Milvus (for larger deployments)
**Implementation**:
- FAISS IndexFlatIP (Inner Product) for cosine similarity
- Metadata storage for mapping vectors to original text
- Serialization for persistence
## Processing Flow
1. **Document Ingestion**:
- Accept documents via upload interface
- Store original documents in a document store
- Extract document metadata (title, date, source)
2. **Processing Pipeline Execution**:
- Process documents through the pipeline components
- Track processing status and errors
- Generate unique IDs for each chunk
3. **Index Management**:
- Create and update vector indices
- Implement versioning for indices
- Provide reindexing capabilities
## Norwegian Language Considerations
- **Character Encoding**: Ensure proper handling of Norwegian characters (UTF-8)
- **Tokenization**: Use tokenizers that properly handle Norwegian word structures
- **Stopwords**: Implement Norwegian stopword filtering for improved retrieval
- **Stemming/Lemmatization**: Consider Norwegian-specific stemming or lemmatization
## Implementation Plan
1. Create document processor class structure
2. Implement text extraction for different formats
3. Develop chunking strategies optimized for Norwegian
4. Build text cleaning and normalization functions
5. Integrate with embedding model
6. Set up vector storage and retrieval mechanisms
7. Create a unified API for the entire pipeline
## Code Structure
```python
# Example structure for the document processing pipeline
class DocumentProcessor:
def __init__(self, embedding_model, vector_store):
self.embedding_model = embedding_model
self.vector_store = vector_store
def process_document(self, document_path):
# Extract text based on document type
raw_text = self._extract_text(document_path)
# Split text into chunks
chunks = self._chunk_text(raw_text)
# Clean and normalize text chunks
cleaned_chunks = [self._clean_text(chunk) for chunk in chunks]
# Generate embeddings
embeddings = self._generate_embeddings(cleaned_chunks)
# Store in vector database
self._store_embeddings(embeddings, cleaned_chunks)
def _extract_text(self, document_path):
# Implementation for different document types
pass
def _chunk_text(self, text):
# Implementation of chunking strategy
pass
def _clean_text(self, text):
# Text normalization and cleaning
pass
def _generate_embeddings(self, chunks):
# Use embedding model to generate vectors
pass
def _store_embeddings(self, embeddings, chunks):
# Store in vector database with metadata
pass
```
## Next Steps
1. Implement the document processor class
2. Create test documents in Norwegian
3. Evaluate chunking strategies for Norwegian text
4. Benchmark embedding generation performance
5. Test retrieval accuracy with Norwegian queries
|