Spaces:
Runtime error
Runtime error
import os | |
import logging | |
from datetime import datetime | |
from pathlib import Path | |
import pickle | |
from tqdm import tqdm | |
from datasets import load_dataset | |
import chromadb | |
import matplotlib.pyplot as plt | |
def set_directories(): | |
curr_dir = Path(os.getcwd()) | |
data_dir = curr_dir / 'data' | |
data_pickle_path = data_dir / 'data_set.pkl' | |
vectordb_dir = curr_dir / 'vectore_storage' | |
chroma_dir = vectordb_dir / 'chroma' | |
for dir in [data_dir, vectordb_dir, chroma_dir]: | |
if not os.path.exists(dir): | |
os.mkdir(dir) | |
return data_pickle_path, chroma_dir | |
def load_data(data_pickle_path, dataset="vipulmaheshwari/GTA-Image-Captioning-Dataset"): | |
if not os.path.exists(data_pickle_path): | |
print(f"Data set hasn't been loaded. Loading from the datasets library and save it as a pickle.") | |
data_set = load_dataset(dataset) | |
with open(data_pickle_path, 'wb') as outfile: | |
pickle.dump(data_set, outfile) | |
else: | |
print(f"Data set already exists in the local drive. Loading it.") | |
with open(data_pickle_path, 'rb') as infile: | |
data_set = pickle.load(infile) | |
return data_set | |
def get_embeddings(data, model): | |
# Get the id and embedding of each data/image | |
ids = [] | |
embeddings = [] | |
for id, image in tqdm(zip(list(range(len(data))), data)): | |
ids.append("image "+str(id)) | |
embedding = model.encode(image) | |
embeddings.append(embedding.tolist()) | |
return ids, embeddings | |
def get_collection(chroma_dir, model, collection_name, data): | |
client = chromadb.PersistentClient(path=chroma_dir.__str__()) | |
collection = client.get_or_create_collection(name=collection_name) | |
if collection.count() != len(data): | |
print("Adding embeddings to the collection.") | |
ids, embeddings = get_embeddings(data, model) | |
collection.add( | |
ids=ids, | |
embeddings=embeddings | |
) | |
else: | |
print("Embeddings are already added to the collection.") | |
return collection | |
def get_result(collection, data_set, query, model, n_results=2): | |
# Query the vector store and get results | |
results = collection.query( | |
query_embeddings=model.encode([query]), | |
n_results=2 | |
) | |
# Get the id of the most relevant image | |
img_id = int(results['ids'][0][0].split('image ')[-1]) | |
# Get the image and its caption | |
image = data_set['train']['image'][img_id] | |
text = data_set['train']['text'][img_id] | |
return image, text | |
def show_image(image, text, query): | |
plt.ion() | |
plt.axis("off") | |
plt.imshow(image) | |
plt.show() | |
print(f"User query: {query}") | |
print(f"Original description: {text}\n") | |
def get_logger(): | |
log_path = "./log/" | |
if not os.path.exists(log_path): | |
os.mkdir(log_path) | |
cur_date = datetime.utcnow().strftime("%Y%m%d") | |
log_filename = f"{log_path}{cur_date}.log" | |
logging.basicConfig( | |
filename=log_filename, | |
level=logging.INFO, | |
format="%(asctime)s %(levelname)-8s %(message)s", | |
datefmt="%Y-%m-%d %H:%M:%S") | |
logger = logging.getLogger(__name__) | |
return logger | |
def initialization(logger): | |
print("Initializing...") | |
logger.info("Initializing...") | |
print("-------------------------------------------------------") | |
logger.info("-------------------------------------------------------") | |
print("Importing functions...") | |
logger.info("Importing functions...") | |
# Import module, classes, and functions | |
from sentence_transformers import SentenceTransformer | |
from utils.utils import set_directories, load_data, get_collection, get_result, show_image | |
print("Set directories...") | |
logger.info("Set directories...") | |
# Set directories | |
data_pickle_path, chroma_dir = set_directories() | |
print("Loading data...") | |
logger.info("Loading data...") | |
# Load dataset | |
data_set = load_data(data_pickle_path) | |
print("Loading CLIP model...") | |
logger.info("Loading CLIP model...") | |
# Load CLIP model | |
model = SentenceTransformer("sentence-transformers/clip-ViT-L-14") | |
print("Getting vector embeddings...") | |
logger.info("Getting vector embeddings...") | |
# Get vector embeddings | |
collection = get_collection(chroma_dir, model, collection_name='image_vectors', data=data_set['train']['image']) | |
print("-------------------------------------------------------") | |
logger.info("-------------------------------------------------------") | |
print("Initialization completed! Ready for search.") | |
logger.info("Initialization completed! Ready for search.") | |
return collection, data_set, model, logger |