henryhyunwookim's picture
Update utils/utils.py
dc81f01 verified
raw
history blame
5.3 kB
import os
import logging
from datetime import datetime
from pathlib import Path
import pickle
from tqdm import tqdm
from datasets import load_dataset
import chromadb
import matplotlib.pyplot as plt
from sentence_transformers import SentenceTransformer
import google.generativeai as genai
from dotenv import load_dotenv
def set_directories():
curr_dir = Path(os.getcwd())
data_dir = curr_dir / 'data'
data_pickle_path = data_dir / 'data_set.pkl'
vectordb_dir = curr_dir / 'vector_storage'
chroma_dir = vectordb_dir / 'chroma'
for dir in [data_dir, vectordb_dir, chroma_dir]:
if not os.path.exists(dir):
os.mkdir(dir)
return data_pickle_path, chroma_dir
def load_data(data_pickle_path, dataset="vipulmaheshwari/GTA-Image-Captioning-Dataset"):
if not os.path.exists(data_pickle_path):
print(f"Data set hasn't been loaded. Loading from the datasets library and save it as a pickle.")
data_set = load_dataset(dataset)
with open(data_pickle_path, 'wb') as outfile:
pickle.dump(data_set, outfile)
else:
print(f"Data set already exists in the local drive. Loading it.")
with open(data_pickle_path, 'rb') as infile:
data_set = pickle.load(infile)
return data_set
def get_embeddings(data, model):
# Get the id and embedding of each data/image
ids = []
embeddings = []
for id, image in tqdm(zip(list(range(len(data))), data)):
ids.append("image "+str(id))
embedding = model.encode(image)
embeddings.append(embedding.tolist())
return ids, embeddings
def get_collection(chroma_dir, model, collection_name, data):
client = chromadb.PersistentClient(path=chroma_dir.__str__())
collection = client.get_or_create_collection(name=collection_name)
if collection.count() != len(data):
print("Adding embeddings to the collection.")
ids, embeddings = get_embeddings(data, model)
collection.add(
ids=ids,
embeddings=embeddings
)
else:
print("Embeddings are already added to the collection.")
return collection
def get_search_result(collection, data_set, query, model, n_results=2):
# Query the vector store and get results
results = collection.query(
query_embeddings=model.encode([query]),
n_results=2
)
# Get the id of the most relevant image
img_id = int(results['ids'][0][0].split('image ')[-1])
# Get the image and its caption
image = data_set['train']['image'][img_id]
text = data_set['train']['text'][img_id]
return image, text
def show_image(image, text, query):
plt.ion()
plt.axis("off")
plt.imshow(image)
plt.show()
print(f"User query: {query}")
print(f"Original description: {text}\n")
def get_logger():
log_path = "./log/"
if not os.path.exists(log_path):
os.mkdir(log_path)
cur_date = datetime.utcnow().strftime("%Y%m%d")
log_filename = f"{log_path}{cur_date}.log"
logging.basicConfig(
filename=log_filename,
level=logging.INFO,
format="%(asctime)s %(levelname)-8s %(message)s",
datefmt="%Y-%m-%d %H:%M:%S")
logger = logging.getLogger(__name__)
return logger
def get_image_description(image):
_ = load_dotenv()
GOOGLE_API_KEY = os.environ['GOOGLE_API_KEY']
genai.configure(api_key=GOOGLE_API_KEY)
vision_model = genai.GenerativeModel(
"gemini-pro-vision",
generation_config={
"temperature": 0.0
}
)
# image = Image.open(image_path)
prompt = f"""
Describe what you explicitly see in the given image in detail.
Begin your description with "In this image," or "This image is about," to provide context.
Your response should be a hard description of the given image without any thoughts or suggestions.
"""
response = vision_model.generate_content([prompt, image])
description_by_llm = response.text
return description_by_llm
def initialization(logger):
print("Initializing...")
logger.info("Initializing...")
print("-------------------------------------------------------")
logger.info("-------------------------------------------------------")
print("Set directories...")
logger.info("Set directories...")
# Set directories
data_pickle_path, chroma_dir = set_directories()
print("Loading data...")
logger.info("Loading data...")
# Load dataset
data_set = load_data(data_pickle_path)
print("Loading CLIP model...")
logger.info("Loading CLIP model...")
# Load CLIP model
model = SentenceTransformer("sentence-transformers/clip-ViT-L-14")
print("Getting vector embeddings...")
logger.info("Getting vector embeddings...")
# Get vector embeddings
collection = get_collection(chroma_dir, model, collection_name='image_vectors', data=data_set['train']['image'])
print("-------------------------------------------------------")
logger.info("-------------------------------------------------------")
print("Initialization completed! Ready for search.")
logger.info("Initialization completed! Ready for search.")
return collection, data_set, model, logger