Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -48,30 +48,30 @@ class GRU_model(nn.Module):
|
|
48 |
def __init__(self):
|
49 |
super().__init__()
|
50 |
|
51 |
-
self.rnn= nn.GRU(input_size=1477, hidden_size=240,num_layers=1, bias= True).to(
|
52 |
-
self.output= nn.Linear(in_features=240, out_features=24).to(
|
53 |
|
54 |
def forward(self, x):
|
55 |
y, hidden= self.rnn(x)
|
56 |
-
y = y.to(
|
57 |
-
x= self.output(y).to(
|
58 |
return(x)
|
59 |
|
60 |
class RNN_model(nn.Module):
|
61 |
def __init__(self):
|
62 |
super().__init__()
|
63 |
|
64 |
-
self.rnn= nn.RNN(input_size=1477, hidden_size=240,num_layers=1, nonlinearity= 'relu', bias= True).to(
|
65 |
-
self.output= nn.Linear(in_features=240, out_features=24).to(
|
66 |
|
67 |
def forward(self, x):
|
68 |
y, hidden= self.rnn(x)
|
69 |
-
y = y.to(
|
70 |
-
x= self.output(y).to(
|
71 |
return(x)
|
72 |
|
73 |
-
#embedder = SentenceTransformer("bge-small-en-v1.5", device=
|
74 |
-
#embedder = SentenceTransformer("bge-small-en-v1.5", device=
|
75 |
|
76 |
df= pd.read_csv('Symptom2Disease_1.csv')
|
77 |
|
@@ -216,7 +216,7 @@ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
|
|
216 |
bot_message= random.choice(goodbyes_replies)
|
217 |
else:
|
218 |
transformed_new= vectorizer.transform([message])
|
219 |
-
transformed_new= torch.tensor(transformed_new.toarray()).to(torch.float32).to(
|
220 |
#transform_text= vectorizer.transform([message])
|
221 |
#sentence_embeddings = embedder.encode(message)
|
222 |
#sentence_embeddings = torch.from_numpy(sentence_embeddings).float().to(device).unsqueeze(dim=0)
|
|
|
48 |
def __init__(self):
|
49 |
super().__init__()
|
50 |
|
51 |
+
self.rnn= nn.GRU(input_size=1477, hidden_size=240,num_layers=1, bias= True).to(device) ## nonlinearity= 'relu',
|
52 |
+
self.output= nn.Linear(in_features=240, out_features=24).to(device)
|
53 |
|
54 |
def forward(self, x):
|
55 |
y, hidden= self.rnn(x)
|
56 |
+
y = y.to(device)
|
57 |
+
x= self.output(y).to(device)
|
58 |
return(x)
|
59 |
|
60 |
class RNN_model(nn.Module):
|
61 |
def __init__(self):
|
62 |
super().__init__()
|
63 |
|
64 |
+
self.rnn= nn.RNN(input_size=1477, hidden_size=240,num_layers=1, nonlinearity= 'relu', bias= True).to(device)
|
65 |
+
self.output= nn.Linear(in_features=240, out_features=24).to(device)
|
66 |
|
67 |
def forward(self, x):
|
68 |
y, hidden= self.rnn(x)
|
69 |
+
y = y.to(device)
|
70 |
+
x= self.output(y).to(device)
|
71 |
return(x)
|
72 |
|
73 |
+
#embedder = SentenceTransformer("bge-small-en-v1.5", device=device)
|
74 |
+
#embedder = SentenceTransformer("bge-small-en-v1.5", device=device)
|
75 |
|
76 |
df= pd.read_csv('Symptom2Disease_1.csv')
|
77 |
|
|
|
216 |
bot_message= random.choice(goodbyes_replies)
|
217 |
else:
|
218 |
transformed_new= vectorizer.transform([message])
|
219 |
+
transformed_new= torch.tensor(transformed_new.toarray()).to(torch.float32).to(device)
|
220 |
#transform_text= vectorizer.transform([message])
|
221 |
#sentence_embeddings = embedder.encode(message)
|
222 |
#sentence_embeddings = torch.from_numpy(sentence_embeddings).float().to(device).unsqueeze(dim=0)
|