henry2024 commited on
Commit
5e811f4
·
verified ·
1 Parent(s): 776c284

Upload 9 files

Browse files
Symptom2Disease.csv CHANGED
The diff for this file is too large to render. See raw diff
 
Symptom2Disease_1.csv ADDED
The diff for this file is too large to render. See raw diff
 
app.py CHANGED
@@ -1,6 +1,5 @@
1
-
2
- #import locale
3
- #locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')
4
  import accelerate
5
  from sentence_transformers import SentenceTransformer
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
@@ -14,9 +13,11 @@ from sklearn.model_selection import train_test_split
14
  import time
15
  from timeit import default_timer as timer
16
  from typing import Tuple, Dict
 
 
 
17
  '''
18
  import nltk
19
- import nltk_u
20
  from nltk.corpus import stopwords
21
  from nltk.stem import SnowballStemmer
22
  from nltk.tokenize import word_tokenize
@@ -47,7 +48,20 @@ class GRU_model(nn.Module):
47
  def __init__(self):
48
  super().__init__()
49
 
50
- self.rnn= nn.GRU(input_size=384, hidden_size=240,num_layers=2, bias= True).to('cuda') ## nonlinearity= 'relu',
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  self.output= nn.Linear(in_features=240, out_features=24).to('cuda')
52
 
53
  def forward(self, x):
@@ -55,7 +69,33 @@ class GRU_model(nn.Module):
55
  y = y.to('cuda')
56
  x= self.output(y).to('cuda')
57
  return(x)
58
- embedder = SentenceTransformer("bge-small-en-v1.5", device="cuda")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  #########################################################################################################################
60
  if torch.cuda.is_available():
61
  device = "cuda"
@@ -73,7 +113,6 @@ train_data, test_data= train_test_split(df, test_size=0.2, random_state=1)
73
  '''
74
  #########################################################################################################################
75
  #vectorizer = TfidfVectorizer(tokenizer=tokenize, stop_words=english_stopwords).fit(train_data.text)
76
- #vectorizer= nltk_u.vectorizer()
77
  #vectorizer.fit(train_data.text)
78
  #from sklearn.feature_extraction.text import TfidfVectorizer
79
  #from spacy.lang.de.stop_words import STOP_WORDS
@@ -125,13 +164,13 @@ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
125
  chatbot = gr.Chatbot()
126
  msg = gr.Textbox()
127
  clear = gr.ClearButton([msg, chatbot])
128
- def respond(message, chat_history, base_model = "gru_model", embedder = SentenceTransformer("bge-small-en-v1.5", device="cuda"), device='cuda'): # "meta-llama/Meta-Llama-3-70B"
129
- #base_model =/home/henry/Desktop/ARIN7102/phi-2 # gru_model
130
  if base_model == "gru_model":
131
  # Model and transforms preparation
132
- model= GRU_model()
133
  # Load state dict
134
- model.load_state_dict(torch.load(f= 'gru_model.pth', map_location= device))
135
  # Random greetings in list format
136
  greetings = ["hello!",'hello', 'hii !', 'hi', "hi there!", "hi there!", "heyy", 'good morning', 'good afternoon', 'good evening', "hey", "how are you", "how are you?", "how is it going", "how is it going?", "what's up?",
137
  "how are you?", "hey, how are you?", "what is popping", "good to see you!", "howdy!", "hi, nice to meet you.", "hiya!", "hi", "hi, what's new?", "hey, how's your day?", "hi, how have you been?", "greetings"]
@@ -176,14 +215,16 @@ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
176
  elif message.lower() in goodbyes:
177
  bot_message= random.choice(goodbyes_replies)
178
  else:
 
 
179
  #transform_text= vectorizer.transform([message])
180
- sentence_embeddings = embedder.encode(message)
181
- sentence_embeddings = torch.from_numpy(sentence_embeddings).float().to(device).unsqueeze(dim=0)
182
- sentence_embeddings.shape
183
  #transform_text= torch.tensor(transform_text.toarray()).to(torch.float32)
184
  model.eval()
185
  with torch.inference_mode():
186
- y_logits=model(sentence_embeddings.to(device))
187
  pred_prob= torch.argmax(torch.softmax(y_logits, dim=1), dim=1)
188
  test_pred= class_names[pred_prob.item()]
189
  bot_message = f' Based on your symptoms, I believe you are having {test_pred} and I would advice you {disease_advice[test_pred]}'
@@ -225,16 +266,12 @@ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
225
 
226
  msg.submit(respond, [msg, chatbot], [msg, chatbot])
227
  # Launch the demo
228
- demo.launch(share=True)
229
-
230
- #msg.submit(respond, [msg, chatbot], [msg, chatbot])
231
- # Launch the demo
232
- #demo.launch()
233
 
234
 
235
  #gr.ChatInterface(respond).launch()
236
 
237
-
238
  #a = respond('hi', list())
239
  #a = respond("Hi, good morning")
240
  #a = respond("My skin has been peeling, especially on my knees, elbows, and scalp. This peeling is often accompanied by a burning or stinging sensation.")
 
1
+ import locale
2
+ locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')
 
3
  import accelerate
4
  from sentence_transformers import SentenceTransformer
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
13
  import time
14
  from timeit import default_timer as timer
15
  from typing import Tuple, Dict
16
+ from sklearn.feature_extraction.text import TfidfVectorizer
17
+ from spacy.lang.de.stop_words import STOP_WORDS
18
+ vectorizer = TfidfVectorizer(stop_words=list(STOP_WORDS))
19
  '''
20
  import nltk
 
21
  from nltk.corpus import stopwords
22
  from nltk.stem import SnowballStemmer
23
  from nltk.tokenize import word_tokenize
 
48
  def __init__(self):
49
  super().__init__()
50
 
51
+ self.rnn= nn.GRU(input_size=1477, hidden_size=240,num_layers=1, bias= True).to('cuda') ## nonlinearity= 'relu',
52
+ self.output= nn.Linear(in_features=240, out_features=24).to('cuda')
53
+
54
+ def forward(self, x):
55
+ y, hidden= self.rnn(x)
56
+ y = y.to('cuda')
57
+ x= self.output(y).to('cuda')
58
+ return(x)
59
+
60
+ class RNN_model(nn.Module):
61
+ def __init__(self):
62
+ super().__init__()
63
+
64
+ self.rnn= nn.RNN(input_size=1477, hidden_size=240,num_layers=1, nonlinearity= 'relu', bias= True).to('cuda')
65
  self.output= nn.Linear(in_features=240, out_features=24).to('cuda')
66
 
67
  def forward(self, x):
 
69
  y = y.to('cuda')
70
  x= self.output(y).to('cuda')
71
  return(x)
72
+
73
+ #embedder = SentenceTransformer("bge-small-en-v1.5", device="cuda")
74
+ embedder = SentenceTransformer("/home/henry/Desktop/ARIN_7102/download/bge-small-en-v1.5", device="cuda")
75
+
76
+ df= pd.read_csv('Symptom2Disease_1.csv')
77
+
78
+ target=['Psoriasis', 'Varicose Veins', 'Typhoid', 'Chicken pox',
79
+ 'Impetigo', 'Dengue', 'Fungal infection', 'Common Cold',
80
+ 'Pneumonia', 'Dimorphic Hemorrhoids', 'Arthritis', 'Acne',
81
+ 'Bronchial Asthma', 'Hypertension', 'Migraine',
82
+ 'Cervical spondylosis', 'Jaundice', 'Malaria',
83
+ 'urinary tract infection', 'allergy',
84
+ 'gastroesophageal reflux disease', 'drug reaction',
85
+ 'peptic ulcer disease', 'diabetes']
86
+ target_dict= {i:j for i,j in enumerate(sorted(target))}
87
+ df['label']= df['label'].replace({j:i for i,j in enumerate(sorted(target))})
88
+ df.drop('Unnamed: 0', axis= 1, inplace= True)
89
+ df.duplicated().sum()
90
+ df[df.duplicated]
91
+ df.drop_duplicates(inplace= True)
92
+ df['label'].value_counts()
93
+ train_data, test_data= train_test_split(df, test_size=0.15, random_state=42 )
94
+ train_data['label'].value_counts().sort_index()
95
+ test_data['label'].value_counts().sort_index()
96
+ vectorizer.fit(train_data.text)
97
+ vectorizer.get_feature_names_out()[: 100]
98
+ vectorizer= vectorizer
99
  #########################################################################################################################
100
  if torch.cuda.is_available():
101
  device = "cuda"
 
113
  '''
114
  #########################################################################################################################
115
  #vectorizer = TfidfVectorizer(tokenizer=tokenize, stop_words=english_stopwords).fit(train_data.text)
 
116
  #vectorizer.fit(train_data.text)
117
  #from sklearn.feature_extraction.text import TfidfVectorizer
118
  #from spacy.lang.de.stop_words import STOP_WORDS
 
164
  chatbot = gr.Chatbot()
165
  msg = gr.Textbox()
166
  clear = gr.ClearButton([msg, chatbot])
167
+ def respond(message, chat_history, base_model = "gru_model", embedder = SentenceTransformer("/home/henry/Desktop/ARIN_7102/download/bge-small-en-v1.5", device="cuda"), device='cuda'): # "meta-llama/Meta-Llama-3-70B"
168
+ #base_model = /home/henry/Desktop/ARIN_7102/download/phi-2 # gru_model # embedder = SentenceTransformer("/home/henry/Desktop/ARIN_7102/download/bge-small-en-v1.5", device="cuda")
169
  if base_model == "gru_model":
170
  # Model and transforms preparation
171
+ model= RNN_model().to(device)
172
  # Load state dict
173
+ model.load_state_dict(torch.load(f= 'pretrained_gru_model.pth', map_location= device))
174
  # Random greetings in list format
175
  greetings = ["hello!",'hello', 'hii !', 'hi', "hi there!", "hi there!", "heyy", 'good morning', 'good afternoon', 'good evening', "hey", "how are you", "how are you?", "how is it going", "how is it going?", "what's up?",
176
  "how are you?", "hey, how are you?", "what is popping", "good to see you!", "howdy!", "hi, nice to meet you.", "hiya!", "hi", "hi, what's new?", "hey, how's your day?", "hi, how have you been?", "greetings"]
 
215
  elif message.lower() in goodbyes:
216
  bot_message= random.choice(goodbyes_replies)
217
  else:
218
+ transformed_new= vectorizer.transform([message])
219
+ transformed_new= torch.tensor(transformed_new.toarray()).to(torch.float32).to('cuda')
220
  #transform_text= vectorizer.transform([message])
221
+ #sentence_embeddings = embedder.encode(message)
222
+ #sentence_embeddings = torch.from_numpy(sentence_embeddings).float().to(device).unsqueeze(dim=0)
223
+ #sentence_embeddings.shape
224
  #transform_text= torch.tensor(transform_text.toarray()).to(torch.float32)
225
  model.eval()
226
  with torch.inference_mode():
227
+ y_logits=model(transformed_new.to(device))
228
  pred_prob= torch.argmax(torch.softmax(y_logits, dim=1), dim=1)
229
  test_pred= class_names[pred_prob.item()]
230
  bot_message = f' Based on your symptoms, I believe you are having {test_pred} and I would advice you {disease_advice[test_pred]}'
 
266
 
267
  msg.submit(respond, [msg, chatbot], [msg, chatbot])
268
  # Launch the demo
269
+ demo.launch()
270
+ #demo.launch(share=True)
 
 
 
271
 
272
 
273
  #gr.ChatInterface(respond).launch()
274
 
 
275
  #a = respond('hi', list())
276
  #a = respond("Hi, good morning")
277
  #a = respond("My skin has been peeling, especially on my knees, elbows, and scalp. This peeling is often accompanied by a burning or stinging sensation.")
model.py CHANGED
@@ -5,7 +5,7 @@ class RNN_model(nn.Module):
5
  def __init__(self):
6
  super().__init__()
7
 
8
- self.rnn= nn.GRU(input_size=1080, hidden_size=240,num_layers=1, nonlinearity= 'relu', bias= True)
9
  self.output= nn.Linear(in_features=240, out_features=24)
10
 
11
  def forward(self, x):
 
5
  def __init__(self):
6
  super().__init__()
7
 
8
+ self.rnn= nn.RNN(input_size=1080, hidden_size=240,num_layers=1, nonlinearity= 'relu', bias= True)
9
  self.output= nn.Linear(in_features=240, out_features=24)
10
 
11
  def forward(self, x):
preprocess_data.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import Libaries
2
+ from torch.utils.data import DataLoader, TensorDataset
3
+
4
+ # Map target and label data together in a tuple format
5
+ def preprocess_data(label_X, target_y):
6
+ preprocessed= TensorDataset(label_X, target_y)
7
+ return preprocessed
8
+
9
+ # Create data loaders
10
+ def dataloader(dataset, batch_size, shuffle, num_workers):
11
+ dataloader= DataLoader(dataset=dataset,
12
+ batch_size=batch_size,
13
+ shuffle= shuffle,
14
+ num_workers=num_workers,
15
+ )
16
+ return (dataloader)
17
+
pretrained_gru_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c86e14898765e9ed24b37393ac9ccf874d862a2a31365bc810c4a6d02b19d899
3
+ size 1675567
requirements.txt CHANGED
@@ -3,8 +3,3 @@ torchvision==0.15.2
3
  gradio==3.35.2
4
  nltk == 3.8
5
  scikit-learn == 1.3.0
6
- pandas
7
- argparse
8
- str2bool
9
- sentence_transformers
10
- transformers
 
3
  gradio==3.35.2
4
  nltk == 3.8
5
  scikit-learn == 1.3.0
 
 
 
 
 
test_gradio.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ import locale
4
+ locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')
5
+ import accelerate
6
+ from sentence_transformers import SentenceTransformer
7
+ from transformers import AutoModelForCausalLM, AutoTokenizer
8
+ import os
9
+ import torch
10
+ from torch import nn
11
+ import random
12
+ import gradio as gr
13
+ import pandas as pd
14
+ from sklearn.model_selection import train_test_split
15
+ import time
16
+ from timeit import default_timer as timer
17
+ from typing import Tuple, Dict
18
+ '''
19
+ import nltk
20
+ import nltk_u
21
+ from nltk.corpus import stopwords
22
+ from nltk.stem import SnowballStemmer
23
+ from nltk.tokenize import word_tokenize
24
+ from sklearn.feature_extraction.text import TfidfVectorizer
25
+ '''
26
+
27
+ #########################################################################################################################
28
+ '''
29
+ nltk.download('punkt')
30
+ nltk.download('stopwords')
31
+ stemmer= SnowballStemmer(language= 'english')
32
+
33
+ # Tokenize text, e.g "I am sick" = ['i', 'am', 'sick']
34
+ def tokenize(text):
35
+ return [stemmer.stem(token) for token in word_tokenize(text)]
36
+
37
+ # Create stopwords to reduce noise
38
+ english_stopwords= stopwords.words('english')
39
+
40
+ # Create a vectosizer to learn all words in order to convert them into numbers
41
+ def vectorizer():
42
+ vectorizer= TfidfVectorizer(tokenizer=tokenize, stop_words=english_stopwords)
43
+ return vectorizer
44
+ '''
45
+ #########################################################################################################################
46
+
47
+ class GRU_model(nn.Module):
48
+ def __init__(self):
49
+ super().__init__()
50
+
51
+ self.rnn= nn.GRU(input_size=384, hidden_size=240,num_layers=2, bias= True).to('cuda') ## nonlinearity= 'relu',
52
+ self.output= nn.Linear(in_features=240, out_features=24).to('cuda')
53
+
54
+ def forward(self, x):
55
+ y, hidden= self.rnn(x)
56
+ y = y.to('cuda')
57
+ x= self.output(y).to('cuda')
58
+ return(x)
59
+ #embedder = SentenceTransformer("bge-small-en-v1.5", device="cuda")
60
+ embedder = SentenceTransformer("C:/OneDrive/git/ARIN_7102/download/bge-small-en-v1.5", device="cuda")
61
+ #########################################################################################################################
62
+ if torch.cuda.is_available():
63
+ device = "cuda"
64
+ print(f'################################################################# device: {device}#################################################################')
65
+ else:
66
+ device = "cpu"
67
+ '''
68
+ # Import data
69
+ df= pd.read_csv('Symptom2Disease_1.csv')
70
+
71
+ # Preprocess data
72
+ df.drop('Unnamed: 0', axis= 1, inplace= True)
73
+ df.drop_duplicates(inplace= True)
74
+ train_data, test_data= train_test_split(df, test_size=0.2, random_state=1)
75
+ '''
76
+ #########################################################################################################################
77
+ #vectorizer = TfidfVectorizer(tokenizer=tokenize, stop_words=english_stopwords).fit(train_data.text)
78
+ #vectorizer= nltk_u.vectorizer()
79
+ #vectorizer.fit(train_data.text)
80
+ #from sklearn.feature_extraction.text import TfidfVectorizer
81
+ #from spacy.lang.de.stop_words import STOP_WORDS
82
+ #vectorizer = TfidfVectorizer(tokenizer=tokenize, stop_words=list(STOP_WORDS)).fit(train_data.text)
83
+ #########################################################################################################################
84
+ # Setup class names
85
+ class_names= {0: 'Acne', 1: 'Arthritis', 2: 'Bronchial Asthma', 3: 'Cervical spondylosis', 4: 'Chicken pox', 5: 'Common Cold', 6: 'Dengue', 7: 'Dimorphic Hemorrhoids', 8: 'Fungal infection', 9: 'Hypertension',
86
+ 10: 'Impetigo', 11: 'Jaundice', 12: 'Malaria', 13: 'Migraine', 14: 'Pneumonia', 15: 'Psoriasis', 16: 'Typhoid', 17: 'Varicose Veins', 18: 'allergy', 19: 'diabetes', 20: 'drug reaction',
87
+ 21: 'gastroesophageal reflux disease', 22: 'peptic ulcer disease', 23: 'urinary tract infection'}
88
+ # Disease Advice
89
+ disease_advice = {
90
+ 'Acne': "Maintain a proper skincare routine, avoid excessive touching of the affected areas, and consider using over-the-counter topical treatments. If severe, consult a dermatologist.",
91
+ 'Arthritis': "Stay active with gentle exercises, manage weight, and consider pain-relief strategies like hot/cold therapy. Consult a rheumatologist for tailored guidance.",
92
+ 'Bronchial Asthma': "Follow prescribed inhaler and medication regimen, avoid triggers like smoke and allergens, and have an asthma action plan. Regular check-ups with a pulmonologist are important.",
93
+ 'Cervical spondylosis': "Maintain good posture, do neck exercises, and use ergonomic support. Physical therapy and pain management techniques might be helpful.",
94
+ 'Chicken pox': "Rest, maintain hygiene, and avoid scratching. Consult a doctor for appropriate antiviral treatment.",
95
+ 'Common Cold': "Get plenty of rest, stay hydrated, and consider over-the-counter remedies for symptom relief. Seek medical attention if symptoms worsen or last long.",
96
+ 'Dengue': "Stay hydrated, rest, and manage fever with acetaminophen. Seek medical care promptly, as dengue can escalate quickly.",
97
+ 'Dimorphic Hemorrhoids': "Follow a high-fiber diet, maintain good hygiene, and consider stool softeners. Consult a doctor if symptoms persist.",
98
+ 'Fungal infection': "Keep the affected area clean and dry, use antifungal creams, and avoid sharing personal items. Consult a dermatologist if it persists.",
99
+ 'Hypertension': "Follow a balanced diet, exercise regularly, reduce salt intake, and take prescribed medications. Regular check-ups with a healthcare provider are important.",
100
+ 'Impetigo': "Keep the affected area clean, use prescribed antibiotics, and avoid close contact. Consult a doctor for proper treatment.",
101
+ 'Jaundice': "Get plenty of rest, maintain hydration, and follow a doctor's advice for diet and medications. Regular monitoring is important.",
102
+ 'Malaria': "Take prescribed antimalarial medications, rest, and manage fever. Seek medical attention for severe cases.",
103
+ 'Migraine': "Identify triggers, manage stress, and consider pain-relief medications. Consult a neurologist for personalized management.",
104
+ 'Pneumonia': "Follow prescribed antibiotics, rest, stay hydrated, and monitor symptoms. Seek immediate medical attention for severe cases.",
105
+ 'Psoriasis': "Moisturize, use prescribed creams, and avoid triggers. Consult a dermatologist for effective management.",
106
+ 'Typhoid': "Take prescribed antibiotics, rest, and stay hydrated. Dietary precautions are important. Consult a doctor for proper treatment.",
107
+ 'Varicose Veins': "Elevate legs, exercise regularly, and wear compression stockings. Consult a vascular specialist for evaluation and treatment options.",
108
+ 'allergy': "Identify triggers, manage exposure, and consider antihistamines. Consult an allergist for comprehensive management.",
109
+ 'diabetes': "Follow a balanced diet, exercise, monitor blood sugar levels, and take prescribed medications. Regular visits to an endocrinologist are essential.",
110
+ 'drug reaction': "Discontinue the suspected medication, seek medical attention if symptoms are severe, and inform healthcare providers about the reaction.",
111
+ 'gastroesophageal reflux disease': "Follow dietary changes, avoid large meals, and consider medications. Consult a doctor for personalized management.",
112
+ 'peptic ulcer disease': "Avoid spicy and acidic foods, take prescribed medications, and manage stress. Consult a gastroenterologist for guidance.",
113
+ 'urinary tract infection': "Stay hydrated, take prescribed antibiotics, and maintain good hygiene. Consult a doctor for appropriate treatment."
114
+ }
115
+
116
+ howto= """Welcome to the <b>Medical Chatbot</b>, powered by Gradio.
117
+ Currently, the chatbot can WELCOME YOU, PREDICT DISEASE based on your symptoms and SUGGEST POSSIBLE SOLUTIONS AND RECOMENDATIONS, and BID YOU FAREWELL.
118
+ <b>How to Start:</b> Simply type your messages in the textbox to chat with the Chatbot and press enter!<br><br>
119
+ The bot will respond based on the best possible answers to your messages."""
120
+
121
+
122
+ # Create the gradio demo
123
+ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""") as demo:
124
+ gr.HTML('<h1 align="center">Medical Chatbot: ARIN 7102 project')
125
+ with gr.Accordion("Follow these Steps to use the Gradio WebUI", open=True):
126
+ gr.HTML(howto)
127
+ chatbot = gr.Chatbot()
128
+ msg = gr.Textbox()
129
+ clear = gr.ClearButton([msg, chatbot])
130
+ def respond(message, chat_history, base_model = "gru_model", embedder = SentenceTransformer("C:/OneDrive/git/ARIN_7102/download/bge-small-en-v1.5", device="cuda"), device='cuda'): # "meta-llama/Meta-Llama-3-70B"
131
+ #base_model =/home/henry/Desktop/ARIN7102/phi-2 # gru_model
132
+ if base_model == "gru_model":
133
+ # Model and transforms preparation
134
+ model= GRU_model()
135
+ # Load state dict
136
+ model.load_state_dict(torch.load(f= 'pretrained_gru_model.pth', map_location= device))
137
+ # Random greetings in list format
138
+ greetings = ["hello!",'hello', 'hii !', 'hi', "hi there!", "hi there!", "heyy", 'good morning', 'good afternoon', 'good evening', "hey", "how are you", "how are you?", "how is it going", "how is it going?", "what's up?",
139
+ "how are you?", "hey, how are you?", "what is popping", "good to see you!", "howdy!", "hi, nice to meet you.", "hiya!", "hi", "hi, what's new?", "hey, how's your day?", "hi, how have you been?", "greetings"]
140
+ # Random Greetings responses
141
+ greetings_responses = ["Thank you for using our medical chatbot. Please provide the symptoms you're experiencing, and I'll do my best to predict the possible disease.",
142
+ "Hello! I'm here to help you with medical predictions based on your symptoms. Please describe your symptoms in as much detail as possible.",
143
+ "Greetings! I am a specialized medical chatbot trained to predict potential diseases based on the symptoms you provide. Kindly list your symptoms explicitly.",
144
+ "Welcome to the medical chatbot. To assist you accurately, please share your symptoms in explicit detail.",
145
+ "Hi there! I'm a medical chatbot specialized in analyzing symptoms to suggest possible diseases. Please provide your symptoms explicitly.",
146
+ "Hey! I'm your medical chatbot. Describe your symptoms with as much detail as you can, and I'll generate potential disease predictions.",
147
+ "How can I assist you today? I'm a medical chatbot trained to predict diseases based on symptoms. Please be explicit while describing your symptoms.",
148
+ "Hello! I'm a medical chatbot capable of predicting diseases based on the symptoms you provide. Your explicit symptom description will help me assist you better.",
149
+ "Greetings! I'm here to help with medical predictions. Describe your symptoms explicitly, and I'll offer insights into potential diseases.",
150
+ "Hi, I'm the medical chatbot. I've been trained to predict diseases from symptoms. The more explicit you are about your symptoms, the better I can assist you.",
151
+ "Hi, I specialize in medical predictions based on symptoms. Kindly provide detailed symptoms for accurate disease predictions.",
152
+ "Hello! I'm a medical chatbot with expertise in predicting diseases from symptoms. Please describe your symptoms explicitly to receive accurate insights."]
153
+ # Random goodbyes
154
+ goodbyes = ["farewell!",'bye', 'goodbye','good-bye', 'good bye', 'bye', 'thank you', 'later', "take care!",
155
+ "see you later!", 'see you', 'see ya', 'see-you', 'thanks', 'thank', 'bye bye', 'byebye'
156
+ "catch you on the flip side!", "adios!",
157
+ "goodbye for now!", "till we meet again!",
158
+ "so long!", "hasta la vista!",
159
+ "bye-bye!", "keep in touch!",
160
+ "toodles!", "ciao!",
161
+ "later, gator!", "stay safe and goodbye!",
162
+ "peace out!", "until next time!", "off I go!"]
163
+ # Random Goodbyes responses
164
+ goodbyes_replies = ["Take care of yourself! If you have more questions, don't hesitate to reach out.", "Stay well! Remember, I'm here if you need further medical advice.",
165
+ "Goodbye for now! Don't hesitate to return if you need more information in the future.", "Wishing you good health ahead! Feel free to come back if you have more concerns.",
166
+ "Farewell! If you have more symptoms or questions, don't hesitate to consult again.", "Take care and stay informed about your health. Feel free to chat anytime.",
167
+ "Bye for now! Remember, your well-being is a priority. Don't hesitate to ask if needed.", "Have a great day ahead! If you need medical guidance later on, I'll be here.",
168
+ "Stay well and take it easy! Reach out if you need more medical insights.", "Until next time! Prioritize your health and reach out if you need assistance.",
169
+ "Goodbye! Your health matters. Feel free to return if you have more health-related queries.", "Stay healthy and stay curious about your health! If you need more info, just ask.",
170
+ "Wishing you wellness on your journey! If you have more questions, I'm here to help.", "Stay well and stay proactive about your health! If you have more queries, feel free to ask.",
171
+ "Take care and remember, your health is important. Don't hesitate to reach out if needed.", "Goodbye for now! Stay informed and feel free to consult if you require medical advice.",
172
+ "Farewell! Remember, I'm here whenever you need reliable medical information.", "Bye for now! Stay vigilant about your health and don't hesitate to return if necessary.",
173
+ "Take care and keep your well-being a priority! Reach out if you have more health questions.", "Wishing you good health ahead! Don't hesitate to chat if you need medical insights.",
174
+ "Goodbye! Stay well and remember, I'm here to assist you with medical queries."]
175
+
176
+ if message.lower() in greetings:
177
+ bot_message= random.choice(greetings_responses)
178
+ elif message.lower() in goodbyes:
179
+ bot_message= random.choice(goodbyes_replies)
180
+ else:
181
+ #transform_text= vectorizer.transform([message])
182
+
183
+ embedder = SentenceTransformer("bge-small-en-v1.5", device="cuda")
184
+ sentence_embeddings = embedder.encode(message)
185
+ sentence_embeddings = torch.from_numpy(sentence_embeddings).float().to(device).unsqueeze(dim=0)
186
+
187
+ #transform_text= torch.tensor(transform_text.toarray()).to(torch.float32)
188
+ model.eval()
189
+
190
+ with torch.inference_mode():
191
+ y_logits=model(sentence_embeddings.to(device))
192
+ pred_prob= torch.argmax(torch.softmax(y_logits, dim=1), dim=1)
193
+ test_pred= class_names[pred_prob.item()]
194
+ bot_message = f' Based on your symptoms, I believe you are having {test_pred} and I would advice you {disease_advice[test_pred]}'
195
+
196
+
197
+ else:
198
+
199
+ # define the model and tokenizer.
200
+ # model = PhiForCausalLM.from_pretrained(base_model)
201
+ model = AutoModelForCausalLM.from_pretrained(base_model)
202
+ tokenizer = AutoTokenizer.from_pretrained(base_model)
203
+
204
+ # feel free to change the prompt to your liking.
205
+ #prompt = f"Patient: coercive spondylitis, pain in the lumbosacral area when turning over during sleep at night, no pain in any other part of the body.
206
+ #/n Doctor: It shouldn't be a problem, but it's better to upload the images. /n Patient: {message} /n Doctor:"
207
+ output_termination = "\nOutput:"
208
+ prompt = f"Instruct: Hi, i am patient, {message} what is wrong with my body? What drugs should i take, and what is the side-effect of this drug? What should i do?{output_termination}"
209
+ print(prompt)
210
+ # apply the tokenizer.
211
+ tokens = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)
212
+ #tokens = tokens.to(device)
213
+ #eos_token_id = tokenizer.eos_token_id
214
+ # use the model to generate new tokens.
215
+ generated_output = model.generate(**tokens, use_cache=True, max_new_tokens=2000, eos_token_id=50256, pad_token_id=50256)
216
+
217
+ # Find the position of "Output:" and extract the text after it
218
+ generated_text = tokenizer.batch_decode(generated_output)[0]
219
+ # Split the text at "Output:" and take the second part
220
+ split_text = generated_text.split("Output:", 1)
221
+ bot_message = split_text[1].strip() if len(split_text) > 1 else ""
222
+ bot_message = bot_message.replace("<|endoftext|>", "").strip()
223
+ #return bot_message
224
+ #chat_history.append((message, bot_message))
225
+ #time.sleep(2)
226
+ #return "", chat_history
227
+ chat_history.append((message, bot_message))
228
+ time.sleep(2)
229
+ #return bot_message
230
+ return "", chat_history
231
+
232
+
233
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
234
+ # Launch the demo
235
+ demo.launch(share=True)
236
+
237
+ #msg.submit(respond, [msg, chatbot], [msg, chatbot])
238
+ # Launch the demo
239
+ #demo.launch()
240
+
241
+
242
+ #gr.ChatInterface(respond).launch()
243
+
244
+
245
+ #a = respond('hi', list())
246
+ #a = respond("Hi, good morning")
247
+ #a = respond("My skin has been peeling, especially on my knees, elbows, and scalp. This peeling is often accompanied by a burning or stinging sensation.")
248
+ #a = respond("I have blurry vision, and it seems to be getting worse. I'm continuously fatigued and worn out. I also occasionally have acute lightheadedness and vertigo, can you give me some advice?")
249
+ #print(a)
250
+ #gr.ChatInterface(respond).launch()
251
+ #demo = gr.ChatInterface(fn=random_response, examples=[{"text": "Hello", "files": []}], title="Echo Bot", multimodal=True)
252
+ #demo.launch()
train.py CHANGED
@@ -1,7 +1,6 @@
1
 
2
  import torch
3
  from torch import nn
4
- import nltk_u
5
  import pandas as pd
6
  from pathlib import Path
7
  import matplotlib.pyplot as plt
@@ -26,12 +25,13 @@ class RNN_model(nn.Module):
26
  def __init__(self):
27
  super().__init__()
28
 
29
- self.rnn= nn.RNN(input_size=1477, hidden_size=240,num_layers=1, nonlinearity= 'relu', bias= True).to(device)
30
- self.output= nn.Linear(in_features=240, out_features=24).to(device)
31
 
32
  def forward(self, x):
33
  y, hidden= self.rnn(x)
34
- x= self.output(y).to(device)
 
35
  return(x)
36
  #####################################################################################################################
37
  # import data
@@ -85,12 +85,12 @@ if torch.cuda.is_available():
85
  else:
86
  device = "cpu"
87
  #####################################################################################################################
88
- model= RNN_model()
89
  loss_fn= CrossEntropyLoss()
90
  optimizer= torch.optim.SGD(model.parameters(), lr= 0.1, weight_decay=0)
91
  #####################################################################################################################
92
  ## train model
93
- epoch= 500
94
 
95
  results= {
96
  "train_loss": [],
@@ -103,13 +103,13 @@ for i in range(epoch):
103
  train_loss=0
104
  train_acc=0
105
  for batch, (X, y) in enumerate(train_dataloader):
106
- X, y= X.to(device), y.to(device)
107
  # Train the model
108
  model.train()
109
  optimizer.zero_grad()
110
- y_logits= model(X)
111
  # Calculate the loss
112
- loss= loss_fn(y_logits, y)
113
  train_loss += loss
114
  # ypreds
115
  y_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1)
@@ -128,11 +128,11 @@ for i in range(epoch):
128
  model.eval()
129
  with torch.inference_mode():
130
  for X, y in test_dataloader:
131
- X, y= X.to(device), y.to(device)
132
- y_logits= model(X)
133
- loss= loss_fn(y_logits, y)
134
  test_loss += loss
135
- test_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1)
136
  accuracy = accuracy_score(y.cpu(), test_preds.cpu())
137
  test_acc += accuracy
138
  test_loss /= len(test_dataloader)
@@ -162,17 +162,18 @@ plt.legend()
162
  #####################################################################################################################
163
  new_data= 'I have been having burning pain anytime i am peeing, what could be the issue?'
164
  transformed_new= vectorizer.transform([new_data])
165
- transformed_new= torch.tensor(transformed_new.toarray()).to(torch.float32)
166
  model.eval()
167
  with torch.inference_mode():
168
- y_logits=model(transformed_new)
169
- test_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1)
170
  test_pred= target_dict[test_preds.item()]
171
  print(f'based on your symptoms, I believe you are having {test_pred}')
172
 
173
- target_dir_path = Path('Models')
174
  target_dir_path.mkdir(parents=True,
175
  exist_ok=True)
176
- model_path= target_dir_path / 'symtom2disease_model.pth'
177
  torch.save(obj=model.state_dict(),f= model_path)
 
178
  #####################################################################################################################
 
1
 
2
  import torch
3
  from torch import nn
 
4
  import pandas as pd
5
  from pathlib import Path
6
  import matplotlib.pyplot as plt
 
25
  def __init__(self):
26
  super().__init__()
27
 
28
+ self.rnn= nn.RNN(input_size=1477, hidden_size=240,num_layers=1, nonlinearity= 'relu', bias= True).to('cuda')
29
+ self.output= nn.Linear(in_features=240, out_features=24).to('cuda')
30
 
31
  def forward(self, x):
32
  y, hidden= self.rnn(x)
33
+ y = y.to('cuda')
34
+ x= self.output(y).to('cuda')
35
  return(x)
36
  #####################################################################################################################
37
  # import data
 
85
  else:
86
  device = "cpu"
87
  #####################################################################################################################
88
+ model= RNN_model().to(device)
89
  loss_fn= CrossEntropyLoss()
90
  optimizer= torch.optim.SGD(model.parameters(), lr= 0.1, weight_decay=0)
91
  #####################################################################################################################
92
  ## train model
93
+ epoch= 300
94
 
95
  results= {
96
  "train_loss": [],
 
103
  train_loss=0
104
  train_acc=0
105
  for batch, (X, y) in enumerate(train_dataloader):
106
+ X, y= X.to('cuda'), y.to('cuda')
107
  # Train the model
108
  model.train()
109
  optimizer.zero_grad()
110
+ y_logits= model(X).to('cuda')
111
  # Calculate the loss
112
+ loss= loss_fn(y_logits, y).to('cuda')
113
  train_loss += loss
114
  # ypreds
115
  y_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1)
 
128
  model.eval()
129
  with torch.inference_mode():
130
  for X, y in test_dataloader:
131
+ X, y= X.to('cuda'), y.to('cuda')
132
+ y_logits= model(X).to('cuda')
133
+ loss= loss_fn(y_logits, y).to('cuda')
134
  test_loss += loss
135
+ test_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1).to('cuda')
136
  accuracy = accuracy_score(y.cpu(), test_preds.cpu())
137
  test_acc += accuracy
138
  test_loss /= len(test_dataloader)
 
162
  #####################################################################################################################
163
  new_data= 'I have been having burning pain anytime i am peeing, what could be the issue?'
164
  transformed_new= vectorizer.transform([new_data])
165
+ transformed_new= torch.tensor(transformed_new.toarray()).to(torch.float32).to('cuda')
166
  model.eval()
167
  with torch.inference_mode():
168
+ y_logits=model(transformed_new).to('cuda')
169
+ test_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1).to('cuda')
170
  test_pred= target_dict[test_preds.item()]
171
  print(f'based on your symptoms, I believe you are having {test_pred}')
172
 
173
+ target_dir_path = Path('')
174
  target_dir_path.mkdir(parents=True,
175
  exist_ok=True)
176
+ model_path= target_dir_path / 'pretrained_gru_model.pth'
177
  torch.save(obj=model.state_dict(),f= model_path)
178
+ print('########### model saved ###########')
179
  #####################################################################################################################