heaversm commited on
Commit
65772d2
·
1 Parent(s): 65ef3b6

update main app file with new github streamlit code

Browse files
Files changed (2) hide show
  1. app.py +54 -78
  2. requirements.txt +5 -6
app.py CHANGED
@@ -1,17 +1,17 @@
1
  import streamlit as st
2
- from bs4 import BeautifulSoup
3
- from langchain.embeddings import HuggingFaceEmbeddings
4
- import pickle
5
- import torch
6
- import io
7
- from langchain.vectorstores import FAISS
8
- import json
9
 
10
- class CPU_Unpickler(pickle.Unpickler):
11
- def find_class(self, module, name):
12
- if module == 'torch.storage' and name == '_load_from_bytes':
13
- return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
14
- else: return super().find_class(module, name)
15
 
16
 
17
  @st.cache_resource
@@ -20,80 +20,56 @@ def get_hugging_face_model():
20
  hf = HuggingFaceEmbeddings(model_name=model_name)
21
  return hf
22
 
 
 
 
23
 
24
- @st.cache_resource
25
- def get_db():
26
- with open("codesearchdb.pickle", "rb") as f:
27
- db = CPU_Unpickler(f).load()
28
- print("Loaded db")
29
- # save_as_json(db, "codesearchdb.json") # Save as JSON
30
- return db
31
-
32
- def save_as_json(data, filename):
33
- # Convert the data to a JSON serializable format
34
- serializable_data = data_to_serializable(data)
35
- with open(filename, "w") as json_file:
36
- json.dump(serializable_data, json_file)
37
-
38
- def data_to_serializable(data):
39
- if isinstance(data, dict):
40
- return {k: data_to_serializable(v) for k, v in data.items() if not callable(v) and not isinstance(v, type)}
41
- elif isinstance(data, list):
42
- return [data_to_serializable(item) for item in data]
43
- elif isinstance(data, (str, int, float, bool)) or data is None:
44
- return data
45
- elif hasattr(data, '__dict__'):
46
- return data_to_serializable(data.__dict__)
47
- elif hasattr(data, '__slots__'):
48
- return {slot: data_to_serializable(getattr(data, slot)) for slot in data.__slots__}
49
- else:
50
- return str(data) # Convert any other types to string
51
-
52
- def get_similar_links(query, db, embeddings):
53
- embedding_vector = embeddings.embed_query(query)
54
- docs_and_scores = db.similarity_search_by_vector(embedding_vector, k = 10)
55
- hrefs = []
56
- for docs in docs_and_scores:
57
- html_doc = docs.page_content
58
- soup = BeautifulSoup(html_doc, 'html.parser')
59
- href = [a['href'] for a in soup.find_all('a', href=True)]
60
- hrefs.append(href)
61
- links = []
62
- for href_list in hrefs:
63
- for link in href_list:
64
- links.append(link)
65
- return links
66
-
67
 
68
- embedding_vector = get_hugging_face_model()
69
- db = FAISS.load_local("code_sim_index", embedding_vector, allow_dangerous_deserialization=True)
70
- save_as_json(db, "code_sim_index.json") # Save as JSON
71
 
72
- st.title("Find Similar Code")
73
  text_input = st.text_area("Enter a Code Example", value =
74
  """
75
- class Solution:
76
- def subsets(self, nums: List[int]) -> List[List[int]]:
77
- outputs = []
78
- def backtrack(k, index, subSet):
79
- if index == k:
80
- outputs.append(subSet[:])
81
- return
82
- for i in range(index, len(nums)):
83
- backtrack(k, i + 1, subSet + [nums[i]])
84
- for j in range(len(nums) + 1):
85
- backtrack(j, 0, [])
86
- return outputs
87
  """, height = 330
88
  )
89
- button = st.button("Find Similar Questions")
 
 
 
90
  if button:
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  query = text_input
92
- answer = get_similar_links(query, db, embedding_vector)
93
- for link in set(answer):
94
- st.write(link)
 
 
 
 
 
 
 
95
 
96
- else:
97
- st.info("Please Input Valid Text")
98
 
99
- # get_db()
 
 
1
  import streamlit as st
2
+ import os
3
+ from dotenv import load_dotenv
4
+ from langchain.document_loaders import GithubFileLoader
5
+ # from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain_huggingface import HuggingFaceEmbeddings
7
+ from langchain_community.vectorstores import FAISS
8
+ from langchain_text_splitters import CharacterTextSplitter
9
 
10
+ load_dotenv()
11
+
12
+ #get the GITHUB_ACCESS_TOKEN from the .env file
13
+ GITHUB_ACCESS_TOKEN = os.getenv("GITHUB_ACCESS_TOKEN")
14
+ GITHUB_BASE_URL = "https://github.com/"
15
 
16
 
17
  @st.cache_resource
 
20
  hf = HuggingFaceEmbeddings(model_name=model_name)
21
  return hf
22
 
23
+ def get_similar_files(query, db, embeddings):
24
+ docs_and_scores = db.similarity_search_with_score(query)
25
+ return docs_and_scores
26
 
27
+ # STREAMLIT INTERFACE
28
+ st.title("Find Similar Code")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ USER = st.text_input("Enter the Github User", value = "heaversm")
31
+ REPO = st.text_input("Enter the Github Repository", value = "gdrive-docker")
32
+ FILE_TYPES_TO_LOAD = st.multiselect("Select File Types", [".py", ".ts",".js",".css",".html"], default = [".py"])
33
 
 
34
  text_input = st.text_area("Enter a Code Example", value =
35
  """
36
+ def create_app():
37
+ app = connexion.FlaskApp(__name__, specification_dir="../.openapi")
38
+ app.add_api(
39
+ API_VERSION, resolver=connexion.resolver.RelativeResolver("provider.app")
40
+ )
 
 
 
 
 
 
 
41
  """, height = 330
42
  )
43
+
44
+ button = st.button("Find Similar Code")
45
+
46
+
47
  if button:
48
+ loader = GithubFileLoader(
49
+ repo=f"{USER}/{REPO}",
50
+ access_token=GITHUB_ACCESS_TOKEN,
51
+ github_api_url="https://api.github.com",
52
+ file_filter=lambda file_path: file_path.endswith(
53
+ tuple(FILE_TYPES_TO_LOAD)
54
+ )
55
+ )
56
+ documents = loader.load()
57
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
58
+ docs = text_splitter.split_documents(documents)
59
+ embedding_vector = get_hugging_face_model()
60
+ db = FAISS.from_documents(docs, embedding_vector)
61
  query = text_input
62
+ results_with_scores = get_similar_files(query, db, embedding_vector)
63
+ for doc, score in results_with_scores:
64
+ print(f"Path: {doc.metadata['path']}, Score: {score}")
65
+
66
+ top_file_path = results_with_scores[0][0].metadata['path']
67
+ top_file_content = results_with_scores[0][0].page_content
68
+ top_file_score = results_with_scores[0][1]
69
+ top_file_link = f"{GITHUB_BASE_URL}{USER}/{REPO}/blob/main/{top_file_path}"
70
+ # write a clickable link in streamlit
71
+ st.markdown(f"[Top file link]({top_file_link})")
72
 
 
 
73
 
74
+ else:
75
+ st.info("Please Submit a Code Sample to Find Similar Code")
requirements.txt CHANGED
@@ -1,8 +1,7 @@
 
 
1
  langchain
2
- sentence-transformers
3
- bs4
4
- faiss-cpu
5
- altair==4.0
6
  langchain-community
7
- streamlit
8
- python-dotenv
 
 
1
+ streamlit
2
+ python-dotenv
3
  langchain
 
 
 
 
4
  langchain-community
5
+ langchain_huggingface
6
+ langchain_text_splitters
7
+ sentence-transformers