Spaces:
Runtime error
Runtime error
import streamlit as st | |
from bs4 import BeautifulSoup | |
from langchain.embeddings import HuggingFaceEmbeddings | |
import pickle | |
import torch | |
import io | |
from langchain.vectorstores import FAISS | |
import json | |
class CPU_Unpickler(pickle.Unpickler): | |
def find_class(self, module, name): | |
if module == 'torch.storage' and name == '_load_from_bytes': | |
return lambda b: torch.load(io.BytesIO(b), map_location='cpu') | |
else: return super().find_class(module, name) | |
def get_hugging_face_model(): | |
model_name = "mchochlov/codebert-base-cd-ft" | |
hf = HuggingFaceEmbeddings(model_name=model_name) | |
return hf | |
def get_db(): | |
with open("codesearchdb.pickle", "rb") as f: | |
db = CPU_Unpickler(f).load() | |
print("Loaded db") | |
# save_as_json(db, "codesearchdb.json") # Save as JSON | |
return db | |
def save_as_json(data, filename): | |
# Convert the data to a JSON serializable format | |
serializable_data = data_to_serializable(data) | |
with open(filename, "w") as json_file: | |
json.dump(serializable_data, json_file) | |
def data_to_serializable(data): | |
if isinstance(data, dict): | |
return {k: data_to_serializable(v) for k, v in data.items() if not callable(v) and not isinstance(v, type)} | |
elif isinstance(data, list): | |
return [data_to_serializable(item) for item in data] | |
elif isinstance(data, (str, int, float, bool)) or data is None: | |
return data | |
elif hasattr(data, '__dict__'): | |
return data_to_serializable(data.__dict__) | |
elif hasattr(data, '__slots__'): | |
return {slot: data_to_serializable(getattr(data, slot)) for slot in data.__slots__} | |
else: | |
return str(data) # Convert any other types to string | |
def get_similar_links(query, db, embeddings): | |
embedding_vector = embeddings.embed_query(query) | |
docs_and_scores = db.similarity_search_by_vector(embedding_vector, k = 10) | |
hrefs = [] | |
for docs in docs_and_scores: | |
html_doc = docs.page_content | |
soup = BeautifulSoup(html_doc, 'html.parser') | |
href = [a['href'] for a in soup.find_all('a', href=True)] | |
hrefs.append(href) | |
links = [] | |
for href_list in hrefs: | |
for link in href_list: | |
links.append(link) | |
return links | |
embedding_vector = get_hugging_face_model() | |
db = FAISS.load_local("code_sim_index", embedding_vector, allow_dangerous_deserialization=True) | |
save_as_json(db, "code_sim_index.json") # Save as JSON | |
st.title("Find Similar Code") | |
text_input = st.text_area("Enter a Code Example", value = | |
""" | |
class Solution: | |
def subsets(self, nums: List[int]) -> List[List[int]]: | |
outputs = [] | |
def backtrack(k, index, subSet): | |
if index == k: | |
outputs.append(subSet[:]) | |
return | |
for i in range(index, len(nums)): | |
backtrack(k, i + 1, subSet + [nums[i]]) | |
for j in range(len(nums) + 1): | |
backtrack(j, 0, []) | |
return outputs | |
""", height = 330 | |
) | |
button = st.button("Find Similar Questions") | |
if button: | |
query = text_input | |
answer = get_similar_links(query, db, embedding_vector) | |
for link in set(answer): | |
st.write(link) | |
else: | |
st.info("Please Input Valid Text") | |
# get_db() |