File size: 3,792 Bytes
da443a0
 
 
 
 
 
 
 
 
 
1b4d595
da443a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4d595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da443a0
1b4d595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b442a1d
1b4d595
8073098
1b4d595
11c7e42
1b4d595
 
 
 
 
 
 
 
 
 
 
 
da443a0
 
1b4d595
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# import required packages
import google.generativeai as genai
import os
import PIL.Image
import gradio as gr
from gradio_multimodalchatbot import MultimodalChatbot
from gradio.data_classes import FileData

# For better security practices, retrieve sensitive information like API keys from environment variables.

# Fetch an environment variable.
GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)

# These codelines are just to verify if your api key is correct or not
# Use them when you clone the repo and build locally
#!curl \
#-H 'Content-Type: application/json' \
#-d '{ "prompt": { "text": "Write a very short story about a magic backpack"} }' \
#"https://generativelanguage.googleapis.com/v1beta3/models/text-bison-001:generateText?key=<enter-your-key-here>"

# Initialize genai models
model = genai.GenerativeModel('gemini-pro')
modelvis = genai.GenerativeModel('gemini-pro-vision')

def gemini(input, file, chatbot=[]):
  """
  Function to handle gemini model and gemini vision model interactions.

  Parameters:
  input (str): The input text.
  file (File): An optional file object for image processing.
  chatbot (list): A list to keep track of chatbot interactions.

  Returns:
  tuple: Updated chatbot interaction list, an empty string, and None.
  """

  messages = []
  print(chatbot)

  # Process previous chatbot messages if present
  if len(chatbot) != 0:
    for user, bot in chatbot:
      user, bot = user.text, bot.text
      messages.extend([
        {'role': 'user', 'parts': [user]},
        {'role': 'model', 'parts': [bot]}
      ])
    messages.append({'role': 'user', 'parts': [input]})
  else:
    messages.append({'role': 'user', 'parts': [input]})

  try:
    # Process image if file is provided
    if file is not None:
      with PIL.Image.open(file.name) as img:
        message = [{'role': 'user', 'parts': [input, img]}]
        response = modelvis.generate_content(message)
        gemini_video_resp = response.text
        messages.append({'role': 'model', 'parts': [gemini_video_resp]})

        # Construct list of messages in the required format
        user_msg = {"text": input, "files": [{"file": FileData(path=file.name)}]}
        bot_msg = {"text": gemini_video_resp, "files": []}
        chatbot.append([user_msg, bot_msg])
    else:
      response = model.generate_content(messages)
      gemini_resp = response.text

      # Construct list of messages in the required format
      user_msg = {"text": input, "files": []}
      bot_msg = {"text": gemini_resp, "files": []}
      chatbot.append([user_msg, bot_msg])
  except Exception as e:
    # Handling exceptions and raising error to the modal
    print(f"An error occurred: {e}")
    raise gr.Error(e)

  return chatbot, "", None

# Define the Gradio Blocks interface
with gr.Blocks() as demo:
  # # Add a centered header using HTML
  # gr.HTML("<center><h1>Gemini-PRO & Gemini-PRO-Vision API</h1></center>")

  # Initialize the MultimodalChatbot component
  multi = MultimodalChatbot(value=[])

  with gr.Row():
    # Textbox for user input with increased scale for better visibility
    tb = gr.Textbox(scale=5, placeholder='Message CortexChat with Vision...')

    # Upload button for image files
    up = gr.UploadButton("Attach File", file_types=["image"], scale=1)

  # Define the behavior on text submission
  tb.submit(gemini, [tb, up, multi], [multi, tb, up])

  # Define the behavior on image upload
  # Using chained then() calls to update the upload button's state
  up.upload(lambda: gr.UploadButton("Uploading Image..."), [], up) \
    .then(lambda: gr.UploadButton("Image Uploaded"), [], up) \
    .then(lambda: gr.UploadButton("Upload Image"), [], up)

# Launch the demo with a queue to handle multiple users
demo.queue().launch()