saadul commited on
Commit
d0ba749
·
1 Parent(s): fd20f2a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -18
app.py CHANGED
@@ -1,25 +1,27 @@
1
  import streamlit as st
2
- import spacy
3
 
4
- # Load spaCy NLP model for NER
5
- nlp = spacy.load("en_core_web_sm")
6
 
7
- # Streamlit app
8
- def main():
9
- st.title("Named Entity Recognition (NER) Demo")
10
 
11
- # User input
12
- text_input = st.text_area("Enter text:", "John Doe is the CEO of ABC Corp, and it is located in New York.")
13
 
14
- # NER processing
15
- if st.button("Extract Entities"):
16
- doc = nlp(text_input)
17
 
18
- # Display entities
19
- entities = [(ent.text, ent.label_) for ent in doc.ents]
20
- st.write("Named Entities:")
21
- for entity, label in entities:
22
- st.write(f"- {entity} ({label})")
23
 
24
- if __name__ == "__main__":
25
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from transformers import pipeline
3
 
4
+ model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned"
 
5
 
6
+ st.set_page_config(page_title="Sentiment Analysis App")
 
 
7
 
 
 
8
 
9
+ sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
 
 
10
 
11
+ st.title("Sentiment Analysis App")
 
 
 
 
12
 
13
+ user_input = st.text_area("Enter a message:")
14
+
15
+ if st.button("Analyze Sentiment"):
16
+ if user_input:
17
+ # Perform sentiment analysis
18
+ results = sentiment_classifier(user_input)
19
+ sentiment_label = results[0]["label"]
20
+ sentiment_score = results[0]["score"]
21
+
22
+ st.write(f"Sentiment: {sentiment_label}")
23
+ st.write(f"Confidence Score: {sentiment_score:.2f}")
24
+
25
+ # Run the Streamlit app
26
+ if _name_ == "_main_":
27
+ st.write("Enter a message and click 'Analyze Sentiment' to classify its sentiment.")